קבוצה ניתנת להגדרה

מתוך testwiki
גרסה מ־02:40, 26 בנובמבר 2021 מאת imported>KotzBot (הטמעת תבנית:בקרת זהויות בערכים (תג))
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)
קפיצה לניווט קפיצה לחיפוש

בלוגיקה מתמטית, קבוצה ניתנת להגדרה היא תת-קבוצה של מודל, המוגדרת על ידי נוסחה בשפה של המודל. כלומר, זוהי קבוצה מהצורה  {x:φ(x)}.

לדוגמה, בשדה המספרים הממשיים (כמודל אקסיומטי של שדה סדור), הקבוצות הניתנות להגדרה הן איחודים סופיים של נקודות וקטעים. בשדה המספרים המרוכבים (כמודל של האקסיומות המגדירות שדה סגור אלגברית), אפשר להגדיר רק קבוצות סופיות וקבוצות שהמשלים שלהן סופי (מודל כזה נקרא מינימלי). המעבר לשדה אקספוננציאלי מאפשר להגדיר ב-  את קבוצת המספרים השלמים (לפי הנוסחה y:ey=1exy=1). לא ידוע האם  , כשדה אקספוננציאלי, הוא "קוואזי-מינימלי" (כלומר, אפשר להגדיר בו רק קבוצות בנות מניה וכאלה שהמשלים שלהן בן-מניה).

תבנית:בקרת זהויות