רציפות למחצה

מתוך testwiki
גרסה מ־04:53, 2 באפריל 2023 מאת imported>בוט סדר הפרקים (סדר תבניות בסוף הערך (בוט סדר הפרקים))
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)
קפיצה לניווט קפיצה לחיפוש

תבנית:לשכתב

פונקציה רציפה מימין
פונקציה רציפה משמאל

באנליזה מתמטית, רציפות למחצה היא מאפיין לפונקציות ממשיות שהוא יותר חלש מרציפות. הפונקציה יכולה להיות רציפה מימין או רציפה משמאל בנקודה x0, על פי ההתנהגות שלה בקטעים שהנקודה היא אחד הקצוות שלה.

הגדרה

בנקודה x0, הפונקציה f(x) רציפה מימין אם הגבול limf(x)=f(x0) כאשר xx0+. באופן דומה מוגדרת רציפות משמאל.

דוגמאות

לדוגמה הפונקציה f(x) = –1 for x < 0 and f(x) = 1 for x ≥ 0 היא רציפה מימין בנקודה x=0. פונקציית הערך השלם רציפה מימין בכל נקודה שלמה. פונקציה יכולה להיות רציפה מימין או משמאל אבל לא רציפה באותה נקודה. לדוגמה הפונקציה:

f(x)={1if x<1,2if x=1,1/2if x>1,

רציפה מימין בנקודה x=1 אבל לא רציפה באותה נקודה בגלל שהגבול הימני שלה שווה ל-1/2 כאשר הגבול השמאלי שלה שווה ל-1. הפונקציה:

f(x)={sin(1/x)if x0,1if x=0,

אינה רציפה לא מימין ולא משמאל.

קישורים חיצוניים

תבנית:ויקישיתוף בשורה