משטח קטלן

מתוך testwiki
גרסה מ־21:29, 22 בפברואר 2019 מאת imported>EranBot (בוט החלפות: מינימלי)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)
קפיצה לניווט קפיצה לחיפוש
דוגמה למשטח קטלן (משטח בורגי).

בגאומטריה, משטח קטלן, על שם אז'ן שרל קטלן, הוא משטח ישרים שכל ישריו מקבילים למישור קבוע. המשוואה הוקטורית של משוח קטלן היא

r = s(u) + v L(u),.

מאפיין של משטחי קטלן הוא המכפלה המעורבת: [L(u), L' (u), L" (u)] = 0. משוואה פרמטרית של משטחי קטלן הוא: x=f(u)+vi(u),y=g(u)+vj(u),z=h(u)+vk(u) אם במשטח קטלן, כל הישרים נחתכים בקטע מסוים, אז המשטח נקרא קונואיד. קטלן הוכיח שהמשטח הבורגי והמישור הם המשטחי ישרים היחידים שהם בעלי שטח מינימלי.

ראו גם

קישורים חיצוניים

  • A. Gray, E. Abbena, S. Salamon, Modern differential geometry of curves and surfaces with Mathematica, 3rd ed. Boca Raton, FL:CRC Press, 2006. [1] (תבנית:ISBN)
  • V. Y. Rovenskii, Geometry of curves and surfaces with MAPLE [2] (תבנית:ISBN)