מטריצה אנטי-סימטרית
תבנית:סימון מתמטי במתמטיקה, במיוחד באלגברה ליניארית, מטריצה אנטי-סימטרית (באנגלית: Anti-Symmetric Matrix או Skew-Symmetric Matrix)תבנית:הערהתבנית:הערה היא מטריצה ריבועית שהשחלוף שלה שווה לשלילה שלה. כלומר, הוא מקיים את התנאיתבנית:הערה:
במונחי הרכיבים של המטריצה, אם מציין את הערך בשורה ה־ ובעמודה ה־, אז תנאי האנטי-סימטריות שווה ערך ל־
תכונות
- אוסף המטריצות האנטי-סימטריות הוא מרחב וקטורי. בפרט, הסכום של שתי מטריצות אנטי סימטריות הוא מטריצה אנטי סימטרית, וכל כפולה בסקלר של מטריצה אנטי סימטרית היא מטריצה אנטי סימטרית.
- כאשר השדה ממאפיין שונה מ-2:
- הממד של מרחב המטריצות האנטי סימטריות הוא .
- הרכיבים באלכסון הראשי של מטריצה אנטי סימטרית הם כולם אפס, ובפרט העקבה שלה שווה לאפס.
- הערכים העצמיים של מטריצה ממשית אנטי-סימטרית הם מספרים מרוכבים טהורים (כלומר, כפולות ממשיות של היחידה המרוכבת i).
- בפרט, אם היא מטריצה אנטי סימטרית ממשית היא מטריצה הפיכה, כאשר היא מטריצת היחידה.
- אם היא מטריצה אנטי סימטרית היא מטריצה סימטרית שלילית (negative indefinite).
- מעל שדה ממאפיין 2, אין הבדל בין מטריצות אנטי-סימטריות למטריצות סימטריות.
שימושים
מכפלה וקטורית
ניתן להשתמש במטריצות אנטי סימטריות של שלוש על שלוש כדי לייצג פעולת מכפלה וקטורית ככפל מטריצות. בהינתן וקטורים ו-, מוגדרת המטריצה:
ניתן לכתוב את פעולת המכפלה הווקטורית בתור
ניתן לאמת זאת בקלות על ידי חישוב שני הצדדים של המשוואה הקודמת והשוואה של כל רכיב תואם של התוצאות.
הגדרת מטריצת סיבוב
בהינתן , וקטור סיבוב, מטריצת הסיבוב המתאימה תהיה:[1]
הכללות
ערך זה עוסק במטריצות שהן אנטי-סימטריות ביחס לפעולת השחלוף. באופן דומה מגדירים איברים אנטי-סימטריים ביחס לאינוולוציה הסימפלקטית של מטריצות, או לכל אינוולוציה אחרת.