מרחב טופולוגי נתרי

מתוך testwiki
גרסה מ־22:59, 3 באוגוסט 2024 מאת imported>EranBot (בוט החלפות: \1)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)
קפיצה לניווט קפיצה לחיפוש

תבנית:מקורות במתמטיקה, מרחב טופולוגי נתרי, שנקרא כך על שם אמי נתר, הוא מרחב טופולוגי המקיים את תנאי השרשראות היורדות עבור קבוצות סגורות. באופן שקול, מרחב טופולוגי הוא נתרי אם ורק אם כל קבוצה פתוחה בו קומפקטית בטופולוגיה המושרית. זה גם שקול לזה שכל תת-קבוצה קומפקטית טופולוגיה המושרית.

הגדרה

מרחב טופולוגי נקרא נתרי אם הוא מקיים את תנאי השרשראות היורדות עבור קבוצות סגורות: כל סדרה

Y1Y2

של תת-קבוצות סגורות מתייצבת, כלומר קיים אינקס m כך ש Ym=Ym+1=.

תכונות

הוכחה: כל תת-קבוצה של מרחב כזה היא קומפקטית ולכן סגורה. לכן הטופולוגיה היא דיסקרטית. כל מרחב קומפקטי דיסקרטי הוא סופי. זה נובע מהתבוננות בכיסוי על ידי תת-קבוצות בנות איבר יחיד.

בגאומטריה אלגברית

דוגמאות רבות של מרחבים נתריים באות מירועות אלגבריות בטופולוגיית זריצקי. עבור יריעה אפינית, קבוצות סגורות בטופולוגיה זו הם קבוצות אפסים של אידיאלים, ולכן תנאי השרשראות היורדות של קבוצות סגורות שקול לתנאי השרשראות העולות של אידיאלים, שהוא שקול לנתריות של חוג הפולינומים של היריעה.

באופן כללי יותר, לכל חוג קומוטטיבי נתרי R, הסכמה Spec R היא נתרית. ההיפיך לא מתקיים משום שקיימים חוגים קומוטטיביים לא נתריים עם אידיאל ראשוני בודד.

דוגמאות

  • כל מרחב טופולוגי עם מספר סופי של נקודות הוא נתרי.
  • המרחב האפיני 𝔸kn בטופולוגיית זריצקי הוא מרחב נתרי.

הערות שוליים

תבנית:הערות שוליים