Português: Ilustração das dimensões necessárias para realizar a quadratura de um círculo unitário, o que exigiria um quadrado com comprimentos laterais iguais à raiz quadrada de pi.
ייחוס – יש לתת ייחוס הולם, לתת קישור לרישיון, ולציין אם נעשו שינויים. אפשר לעשות את זה בכל צורה סבירה, אבל לא בשום צורה שמשתמע ממנה שמעניק הרישיון תומך בך או בשימוש שלך.
שיתוף זהה – יצירת רמיקס, שינוי או בנייה על סמך החומר הזה, תטיל עליך חובה להפיץ את התרומות שלך לפי תנאי רישיון זהה או תואם למקור.
This image still shows that the line segment is equal to the square root of pi. This is not accurate. Each individual side length of a square representing a circular area, will have a side length equal to the square root of pi divided by four, multiplied by the diameter length. This means that the diameter itself and be any length or any measurement base. A diameter of one inch can be 2.52 centimeters or any other number of measurement denotations. Pi is a ratio, not a specific number or independent value. The correct formula is (square root (pi/4) = .886226925442758. This represents a percentage conversion. This value multiplied by 2 times the radius or 1 times the diameter, will always produce the exact side length of a square with the same area as pi times the radius^2. In the case of any diameter length of 10, or converted to 10, will result in a length that represents this decimal value, multiplied by 10. For instance a diameter of ten inches would require a side length the square root of pi*25=78.539816337448. The square root of which is 8.86226925452758. This figure can always be used as the side length so long as the diameter and radius measurements are first converted to a base 10 figure. Meaning a diameter of 17 would simply be 10 and the conversion of the result would be multiplied by 1.7. In this example it would simply be .886226925452758 *10 = 8.86226925452758*1.7*15.06585773269689.