למת רימן-לבג
קפיצה לניווט
קפיצה לחיפוש
תבנית:להשלים במתמטיקה, לֶמת רימן־לבג, על שם המתמטיקאים ברנהרד רימן ואנרי לבג, קובעת כי התמרת פורייה או התמרת לפלס של פונקציה ממרחב L1 מתאפסת באינסוף. ללֶמה חשיבות רבה באנליזה הרמונית.
הלֶמה
בהינתן פונקציה מדידה, שהיא L1 (כלומר: אינטגרל לבג של הוא סופי), אזי:
כלומר, התמרת פורייה של שואפת ל- כאשר שואף לאינסוף.
לֶמה מקבילה
תהא פונקציה רציפה למקוטעין בקטע [L,L-], ויהיו An ו-Bn מקדמי טור פורייה שלה. אזי:
ניתן להכליל את הלֶמה של רימן-לבג לפונקציות אינטגרבליות ולאו דווקא רציפות.
הוכחה
תבנית:להשלים הוכחה עבור פונקציות רציפות ומחזוריות לכל קיים פולינום טריגונומטרי כך ש- נובע מיידית ממשפט פייר כיוון שממוצע סאזרו הוא פולינום טריגונומטרי לכל (מקדמי פורייה של פולינום טריגונומטרי מקיימים: ).