נוסחת שלפלי

מתוך testwiki
קפיצה לניווט קפיצה לחיפוש

בגאומטריה לא-אוקלידית, "נוסחת שלפלי" (Schlafli) קושרת בין השינויים בזוויות הדיהדרליות של טטראדר ואורכי צלעותיו לשינוי הנפח שלו. הנוסחה נקראת על שם לודוויג שלֶפלי (Ludwig Schläfli), מתמטיקאי שווייצרי ואחד מיוצרי התאוריה של גאומטריה בממדים גבוהים, אשר גילה אותה במסגרת חקירותיו את הנפח של פאונים לא-אוקלידיים. שלֶפלי ניסח והוכיח את הנוסחה שלו למקרים פרטיים, וזמן רב לאחר מכן Hellmuth Kneserתבנית:הערה נתן הוכחות לנוסחה הן במקרה של גאומטריה היפרבולית והן במקרה של גאומטריה כדורית.

אחת המוטיבציות לנוסחה היא העובדה שבגאומטריה לא-אוקלידית קיים קשר בין הזוויות הפנימיות של סימפלקס כלשהו לנפח שלו; עובדה זאת עומדת בניגוד למצב בגאומטריה אוקלידית שם יש אפשרות לדמיון בין פאונים כך שאין קשר בין הזויות של הפאון לגודל (שנמדד בנפח) הפאון. למשל, בגאומטריה היפרבולית דו-ממדית קיים משולש שווה-צלעות יחידי (עד כדי איזומטריה)תבנית:הערהתבנית:הערה.

ניסוח

במקרה של מרחב היפרבולי תלת-ממדי H3, נוסחת שלפלי מקבלת את הצורה:

KdV=12ijlijdαij,

כאשר K היא העקמומיות הקבועה של המרחב ההיפרבולי, lij היא אורך הצלע שמחברת את הקודקוד i עם הקודקוד j, ו-dαij הוא השינוי בזווית הדיהדרלית של הצלע ij. נוסחה זהה תקפה גם לגאומטריה כדורית (אלא שהעקמומיות K נעשית חיובית בגאומטריה זו). בעבור המקרה של גאומטריה לא אוקלידית בכל מספר שהוא של ממדים, הנוסחה היאתבנית:הערה:

(n1)KdV=FVn2(F)dαF

כאשר n הוא ממד המרחב, הסימון Vn2(F) מייצג את הנפח ה- n-2 ממדי של "צלע מוכללת" F, ו- dαF הוא השינוי בזווית הדיהדרלית המוכללת - דהיינו הזווית בין שתי פאות n-1 ממדיות סמוכות שהחיתוך שלהן הוא לאורך הצלע המוכללת F. במקרה הדו-ממדי (n = 2) עם עקמומיות קבועה, נוסחת שלפלי שקולה למשפט גאוס-בונהתבנית:הערהתבנית:הערה.

הערות שוליים

תבנית:הערות שוליים