ננו-חלקיקים מגנטיים

מתוך testwiki
קפיצה לניווט קפיצה לחיפוש

ננו-חלקיקים מגנטיים הם חלקיקים בגודל ננומטרי (לרוב בין 1 ננומטר ל-100 ננומטר) העשויים מחומרים בעלי תכונות מגנטיות, כך שהם מושפעים משדה מגנטי חיצוני המופעל עליהם.

היתרון בחלקיקים מגנטיים בגודל זה נובע מכך שככל שמקטינים את גודל החלקיק המגנטי הוא רוכש מבנה פשוט יותר של התחום המגנטי בו ישנה מגנטיזציה אחידה. בכך, הננו-חלקיק מגדיל את היכולת להיות מכוון לפי השדה המגנטי המושרה עליו, בשונה מהחומר בממדו הגדול בו יש צבר גדול של תחומים מגנטייםתבנית:הערה. תכונה נוספת הקיימת בננו-חלקיקים מגנטיים המקנה להם יתרון היא פאראמגנטיות עלתבנית:הערה.

היכולת לשלוט במהלך הסינתזה של הננו-חלקיקים חשובה כדי להתאים את גודלם, הרכבם ופעילות פני שטחםתבנית:הערה. תכונות אלה יקנו לחלקיקים את יכולת המגנטיזציה ואת האפשרות לאבד אותה לאחר הסרת השדה החיצוני בהתאם לצורך לו הם נועדו. כמו כן, מאחר שלננו-חלקיקים מתכתיים ישנה אנרגיית פני שטח גבוהה, יש צורך בסנתוז של שכבת הגנה שתאפשר פסיבציה של פני השטח.

הננו-חלקיקים המגנטיים השכיחים ביותר כיום מורכבים בעיקר מברזל (Fe), זאת בזכות יכולת המגנטיזציה הגבוהה של מתכת זו והשימוש הנרחב בננו-חלקיקים אלה בתחומים רבים בתעשייה וברפואה.

רקע

ננו-חלקיקים מגנטיים מתכתיים מקובלט זמינים כבר מזה 50 שנהתבנית:הערה. הם יוצרו בשיטת פירוק תרמי כדי להגיע לרמה מבוקרת של גודל החלקיקים וטווח גדלים מצומצם. לעומת זאת, כ-30 שנים אחרי, לקראת 1980, הוצעה לראשונה האפשרות להשתמש בננו-חלקיקים מגנטיים לצורך הכוונת תרופות לתאיםתבנית:הערהתבנית:הערה.

טווח הגדלים של ננו-חלקיקים מגנטיים יכול לנוע בין ננומטרים בודדים ועד לעשרות ננומטרים, כך שהם יכולים להיות בגודל של חלבון או אף גן ולהשפיע על פעילותם מקרוב. המאפיינים המגנטיים של ננו-חלקיקים תלויים בעיקר בגודלם ובצורתם בנוסף לתכונות המגנטיות שלהם כמו מומנט מגנטי וגביש מגנטי אנאיזוטרופי – magnetocrystalline anisotropy תבנית:אנ שהמגנוט שלהם מועדף בכיוון מסוים.

כיום יש מגוון רחב של ננו-חלקיקים מגנטיים המסונתזים במספר שיטות מקובלות. התכונות הפיזיקליות המיוחדות של הננו-חלקיקים המגנטיים מאפשרות להם להיות בשימוש נרחב בתחומים שונים כגון אחסון מידע, טיפול סרטני, הדמיות רפואיות, טיהור מים וכדומה.

סינתזת ננו-חלקיקים מגנטיים

ישנן שיטות סינתזה רבות להכנת ננו-חלקיקים מגנטיים, חלקן פשוטות ובעלות שלב אחד וחלקן ארוכות ומורכבות יותר. מוצגות להלן מספר שיטות מקובלות להכנת החלקיקים:

תגובת שיקוע (פרסיפיטציה)

תבנית:הפניה לערך מורחב זוהי אחת השיטות הישנות יותר ליצירת ננו-חלקיקים בעלי תכונות מגנטיות בגודל של עד 5 ננומטר וללא מכשור מיוחד. השיטה מתבססת על שליטה ברמת החומציות (pH) של תמיסת יוני המתכת בה משתמשים להכנת החלקיקים. באופן זה נוצרים חלקיקים של תחמוצת המתכת בגדלים שיכולים להגיע ל-5 ננומטר. שיטה זו פשוטה ואינה דורשת מכשור מיוחד.

דרך נוספת ליצירת הננו-חלקיקים בשיקוע היא על ידי הוספת בסיס לתמיסת מלח של יוני המתכת על פי התגובה הבאה (עבור יוני ברזל):

Fe(aq)2++Fe(aq)3++8OH(aq)Fe3O4(s)+4H2O(l)

שליטה בגודל ובצורת החלקיקים תלויה בחומרי המוצא, ברמת החומציות, בטמפרטורה, ביחסי היונים ובחוזקםתבנית:הערהתבנית:הערה. החסרונות בשיטה זו הם שמתקבל טווח גדלים רחב של החלקיקים, המורפולוגיה שלהם אינה אחידה וישנה תלות ב-pH כדי לשלוט בגודל החלקיקים המתקבלים. בנוסף, קשה לצפות את הננו-חלקיקים לאחר הסינתזה בשכבה נוספת עקב היווצרות צברים שלהם.

מנגנון מיצלה הפוכה

יצירת מיצלה הפוכה מתבססת על ממס לא פולרי (שאינו מימי), כך שהראש ההידרופילי של המולקולה פונה כלפי ליבת המיצלה והקצוות ההידרופובים פונים כלפי חוץ. במצב זה המרכיבים האי-אורגניים (לדוגמה, ברזל כלורידי) של התגובה ימצאו במרכז המיצלה ושם ייווצרו הננו-חלקיקים.

שיטה זו מאפשרת שליטה טובה על גודל החלקיקים הנוצרים בתוך המיצלה, כך שמתקבלת אחידות בגודלם. כמו כן, ניתן להוסיף שכבת ציפוי מגנה לננו-חלקיקים אלה במהלך הסינתזה.

החיסרון בשיטה הוא שטווח הגדלים של החלקיקים מוגבל לגודל המיצלה ושלא ניתן להוסיף שכבה אורגנית על גבי החלקיקים מאחר שהחומר האורגני יישאר בפאזה של הממס האורגני מבחוץ.

בשיטה זו נוצרו ננו-חלקיקים מגנטיים מקובלטתבנית:הערהתבנית:הערה.

התעבות אדים כימית (CVC)

סינתזה של הננו-חלקיקים בעקבות התפרקות תרכובת מתכת נדיפה המחוממת בגז אינרטי (אדיש, שאינו משתתף בתגובה). שיטה זו מאפשרת יצירת ננו-חלקיקים מגנטיים באיכות גבוהה ובכמות גדולה, אך דורשת מכשור מתאים ולעיתים שימוש בתרכובות רעילות מהם מייצרים את החלקיקיםתבנית:הערהתבנית:הערה. בשיטה זו ייצרו ננו-חלקיקים מגנטיים מתכתיים מברזל. הם השתמשו ב Fe(CO)5 כקודמן כך שהוא עבר פירוק בכבשן מחומם ולאחר מכן עיבוי לקבלת הננו-חלקיקים על גבי משטח מקורר. הננו-חלקיקים שהתקבלו היו בטווח גדלים שבין 5 ל-13 ננומטר. ניתן לעשות חמצון נוסף לננו-חלקיקים כפי שבוצע במחקרים אחרים לקבלת ננו-חלקיקים מגנטיים בטווח גדלים של 3–20 ננומטרתבנית:הערה ו-4–16 ננומטרתבנית:הערה.

פירוק תרמי

כאשר תחמוצת מלח מתכתית מחוממת לטמפרטורה מסוימת, היא מתפרקת לננו-חלקיקים של תחמוצת המתכת על פי התגובה הבאה (עבור ברזל)תבנית:הערהתבנית:הערה:

4Fe(NO3)3(s)2Fe2O3(s)+12NO2(g)+3O2(g)

ניתן לעשות חיזור של אותם ננו-חלקיקים מתחמוצת הברזל לננו-חלקיקים של המתכת עצמה על ידי חימום בטמפרטורה מתאימה ותחת גז מחזר על פי התגובות הבאות:

MO+H2M+H2O

MO+COM+CO2

שיטה זו שכיחה בעיקר בתעשייה.

סינתזת תרסיס להבה

סינתזה באמצעות פירוליזה של תרסיס להבה מהווה את אחת השיטות היותר מבטיחות כיום ביצירת ננו-חלקיקים מגנטיים בזכות איכות החלקיקים וטווח גודלם המצומצםתבנית:הערהתבנית:הערה. שיטה זו מאפשרת הכנת ננו-חלקיקים מגנטיים שקשה או לא ניתן להכין בשיטות אחרות. מהלך הסינתזה כולל הזרקת חומר המוצא כגז או כנוזל וחימומו לטמפרטורה גבוהה הנעה בין 300 ל-500 מעלות צלזיוס, ללא נוכחות חמצן (או כל הלוגן אחר). תהליך זה הוא בלתי הפיך. במהלך התהליך, נוצרים מונומרים של הננו-חלקיקים המתנגשים זה בזה ליצירת אגרגטים לאורך הלהבה כמתואר באיור משמאל. הפרמטרים החשובים בסינתזה הם ריכוז חומר המוצא, זמן השהייה בלהבה והטמפרטורה.

תרסיס להבת הפירוליזה מוקף בצינור עם חורים ומוכנס למתקן עם אטמוספירה אינרטית. שליטה בקצב זרימת הגז מאפשרת תנאים מחזרים. תהליך זה מאפשר סינתזה של ננו-חלקיקים מגנטיים בשלב אחד. באיור מימין מופיעים תנאי סינתזה שונים והשפעתם על סוגי הננו-חלקיקים המתקבלים:

סוגי ננו-חלקיקים מגנטיים

Cobalt nanoparticle with graphene shell.
ננו חלקיק מקובלט עם קליפת גרפן

ישנם שלושה סוגי ננו-חלקיקים מגנטיים שמיוצרים כיום:

תחמוצת

ננו-חלקיקים אלה עשויים מתחמוצת המתכת והם הננו-חלקיקים המגנטיים הנחקרים ביותר כיום. כאשר ננו-חלקיקים אלה קטנים מ-128 ננומטר הם בעלי פאראמגנטיות עלתבנית:הערה, דבר המונע מהם להתאגד מאחר שהם מתמגנטים רק כאשר מושרה עליהם שדה מגנטי חיצוניתבנית:הערה. לאחר כיבוי השדה החיצוני, הם מאבדים את המגנטיות. ניתן להגביר את היציבות של ננו-חלקיקים אלה בתמיסות באמצעות התאמת פני שטחם על ידי חומרים פעילי שטח, תרכובות סיליקון וחומצה זרחתיתתבנית:הערה.

דוגמאות לננו-חלקיקים נפוצים מסוג זה: Fe3O4, γFe2O3.

מתכתיים

ננו-חלקיקים מגנטיים ממתכת בלבד הם הפחות מועדפים עקב חסרונותיהם הרבים. ננו-חלקיקים אלה פעילים מאוד ונוטים להגיב באופן ספונטני עם אוויר ומים, כמו כן הם מגיבים עם תחמוצות שונות. תכונה זו מקשה על האחסון, הטיפול והאחזקה של החלקיקים.

מתכתיים עם קליפה

ננו-חלקיקים אלה בעלי ליבה מתכתית וקליפת הגנה המאפשרת פסיבציה של פני השטח של החלקיקתבנית:הערה. דוגמה לננו-חלקיקים עם ליבת קובלט ומעטפת של גרפן מובאת בתמונהתבנית:הערה. היתרונות בהשוואה לסוגי הננו-חלקיקים המגנטים האחרים הם במגנטיזציה הגבוהה שלהם, ביציבות גבוהה בתמיסות שונות (חומציות, בסיסיות ואורגניות) ובכימיה של מעטפת הגרפן שמוכרת כבר. מחקרים אחרים עשו שימוש בזהב בתור קליפה לננו-חלקיקיםתבנית:הערה.

יישומים

במגוון רחב של תחומים משתמשים בננו-חלקיקים מגנטייםתבנית:הערהתבנית:הערהתבנית:הערהתבנית:הערהתבנית:הערה, להלן מספר דוגמאות לכך:

אבחון וטיפול רפואי

ננו-חלקיקים מגנטיים יכולים לשמש בדימות תהודה מגנטית (MRI) לאבחון רפואיתבנית:הערהתבנית:הערהתבנית:הערה. תאים המסומנים בננו-חלקיקים מגנטיים הם בעלי זמן רלקסציה T2* תבנית:אנ קצר יותר מאשר תאים ללא החלקיקים, דבר המקנה ניגודיות טובה יותר בהדמיית MRI. בנוסף, ניתן לכוון את הננו-חלקיקים לתאי מטרה ספציפיים בגוף ואף לצמד להם תרופות שיעזרו בטיפול במידת הצורך. באופן זה, הטיפול הוא נקודתי וספציפי לתאי המטרה ולכן יעיל יותר מהטיפול התרופתי הניתן כיום.

במחקר מסוים ייצרו ננו-חלקיקים עם ליבה מתכתית מגנטית ששימשו לטיפול סרטני מוכוון על ידי העברת תרופה לתאים הסרטנייםתבנית:הערה. בנוסף, אותם חלקיקים עזרו באיתור המיקום המדויק של התאים הסרטניים באמצעות דימות MRI כך שניתן לעקוב בזמן אמת אחר הטיפול. בדימות פלואורסצנטי לעומת דימות באמצעות MRI, נהוג להצמיד למעטפת הננו-חלקיקים קבוצות פונקציונליות בעלות יכולת פלואורסצנציה. למרות ששיטה זו שכיחה, הצימוד הפלואורסצנטי למעטפת משפיע על מסיסות החלקיקים ומוריד את מספר האתרים הפנויים לקשירת ליגדנים שהיו יכולים לעזור בהכוונה של אותם ננו-חלקיקים לאתרי המטרה. כמו כן ישנה אפשרות שהחומר המתכתי של הננו-חלקיק יגרום לדעיכת הפליטה הפלואורסצנטית במנגנון דיכוי פלואורסצנטי.

ננו-חלקיקים מגנטיים יכולים להיות מותאמים ביולוגית ומכוונים אל אתר המטרה באמצעות טיפול של פני השטח שלהם, כך שמחד לא יעוררו תגובה חיסונית בגוף ומאידך יכוונו אל תאי המטרה הסרטניים באמצעות קבוצות פונקציונליות על פני מעטפת החלקיק. אחד החומרים המקובלים כיום לציפוי הננו-חלקיקים הוא PEG תבנית:אנתבנית:הערה שהוא פולימר אינרטי המונע את הראקטיביות של הננו-חלקיקים ובכך מאפשר להם לפעול בגוף ללא הפרעות. התרופה המיועדת לטיפול נמצאת בתוך מעטפת החלקיק ומופעלת בהגיעה לתא המטרה. הליבה המתכתית מאפשרת לעקוב אחר החלקיקים מרגע כניסתם לגוף ועד הגעתם לגידול באמצעות הדמיית MRI. בנוסף, החלקיקים עשויים מחומרים מתכלים כך שבסוף התהליך הם יתפרקו בגוף ויסולקו ממנו.

כיום ישנו טיפול חדש בשם היפרתרמיה מגנטיתתבנית:הערה, בו משתמשים בננו-חלקיקים מגנטיים בטיפול בסרטן בעיקר. הטיפול מתבסס על כך שכאשר חושפים את הננו-חלקיקים המגנטיים לשדה מגנטי מתחלף, הם פולטים חום. כאשר מצמדים את הננו-חלקיקים לגידול בגוף באמצעות קבוצות מתאימות על פני שטח החלקיקים, ומפעילים את השדה המגנטי בתדירות ואמפליטודה מתאימים, טמפרטורת הגידול עולה, מה שגורם למות התאים הסרטניים ללא פגיעה ברקמה הבריאה מסביב.

מחקר ביולוגי ורפואי

סימון תאים

סימון תאים באמצעות ננו-חלקיקים מגנטיים הוא שיטה מקובלת כיום להפרדת והכוונת תאיםתבנית:הערה. ניתן לסמן את התאים באמצעות חיבור הננו-חלקיקים לשטח התאתבנית:הערה או באמצעות כניסתם לתא בבליעה תאית (אנדוציטוזה)תבנית:הערה. ניתן להפרידם או לכוונם בעזרת שדות מגנטיים.

מגנטופיקציה – הדבקה באמצעות שדה מגנטי חיצוני

תהליכים של העברת חומרים לתאים באמצעות שדה מגנטי נקראים מגנטופיקציה תבנית:אנ. בתהליך זה קושרים גורם כלשהו אל הננו-חלקיקים המגנטיים ולאחר מכן מוסיפים אותם אל התאים כאשר משרים עליהם שדה מגנטיתבנית:הערהתבנית:הערה. הננו-חלקיקים נמשכים לתוך התאים בכיוון השדה המושרה. לדוגמה: באמצעות תהליך זה מכניסים רצף של דנ"א לתאים כחלק מתהליך של הנדסה גנטיתתבנית:הערהתבנית:הערה.

תהליכי הפרדה

אחד השימושים הידועים בננו-חלקיקים מגנטיים בתחום הגנטיקה הוא בידוד מולקולות רנ"א שליח. בשיטה זו קושרים קצה פולי T (רצף בסיסי דנ"א מסוג דאוקסיתימין פוספט) אל פני שטח החלקיק. כאשר מתרחש הערבוב עם הרנ"א שליח, הקצה פולי A (רצף בסיסי דנ"א מסוג דאוקסיאדנין פוספט הנמצאים בקצה של כל רנ"א שליח) של הרנ"א שליח ייצמד לקצה הפולי T המחובר לחלקיק וכך ניתן באמצעות מגנט למשוך את החלקיקים יחד עם מולקולות הרנ"אתבנית:הערה.

כימיה

ננו-חלקיקים מגנטיים בעלי פוטנציאל לשמש כזרזים בתגובות כימיות. אפשרות נוספת, מאחר שהחלקיקים מוצקים ובעלי שטח פנים גדול, הם יכולים לשמש כתומכים בזרזים כך שהזרז נספח אל הננו-חלקיקים המגנטיים והם מצדם יכולים להשתתף בתגובה או להיות אינרטים בהתבנית:הערה.

תהליכי טיהור

לננו-חלקיקים מגנטיים יש פוטנציאל גבוה לטיפול בזיהומים שונים במים בזכות יכולת ההפרדה שלהם על ידי הפעלת שדה מגנטי ובזכות יחס שטח לנפח גבוה. במחקר עם מתכות כבדות השתמשו בננו-חלקיקים מגנטיים על מנת להרחיק את המתכות הכבדות מתמיסות או ממים מזוהמיםתבנית:הערה. לצורך כך השתמשו בננו-חלקיקים מגנטיים מברזל עם מעטפת פחמנית אליהם צימדו קלאטור EDTA תבנית:אנ. השימוש בננו-חלקיקים עם מעטפת פחמנית מספק מצד אחד יציבות לחלקיק ומאפשר מצד שני לקשור קבוצות פונקציונליות נוספות עליו. לאחר שקשרו אל פני השטח שלהם אינטר-קלאטורים הנקשרים ליוני המתכת, מוסיפים את הננו-חלקיקים המגנטיים אל המים המזוהמים תוך ערבוב טוב, כך שהם קושרים אל פני השטח שלהם את יוני המתכת. בהמשך, פולים את הננו-חלקיקים שנקשרו אל המתכות על ידי ניקוזם באמצעות מגנט.

ליתוגרפיה מגנטית

ליתוגרפיה מגנטית תבנית:אנ היא שיטה להדפסה מולקולארית כימית או ביולוגית של פני משטחים הנקראת "מגנטוליתוגרפיה"תבנית:הערהתבנית:הערהתבנית:הערהתבנית:הערהתבנית:הערהתבנית:הערה. שיטה זו משתמשת באנרגיה של שדות מגנטיים במקום באנרגיית אור. השדה המגנטי נבנה על פני המשטח באמצעות מסכה מגנטית הבנויה ממצע דיאמגנטי (חומר שלא מגיב למגנט) ותבנית העשויה מחומר פרומגנטי (חומר המגיב לשדות מגנטיים). התבנית קובעת את עוצמת השדות המגנטיים על פני המשטח ומטביעה את תבנית המסכה על פני המצע באמצעות ננו-חלקיקים מגנטיים. החלקיקים נמשכים לתבנית השדה המגנטי הנוצר על ידי המסכה המגנטית. הננו-חלקיקים יכולים להיקשר אל פני המשטח וליצור את תבנית המסכה על פני המצע – השיטה הפוזיטיבית – או לחלופין הם חוסמים את ההיקשרות של מולקולות אל פני המצע ובכך יוצרים הדפס מולקולארי שהוא בעצם תשליל המסכה – השיטה הנגטיבית.

אחד היתרונות החשובים של השיטה החדשה הזו לעומת ליתוגרפיה אופטית הוא בכך ששיטה זו אינה רגישה כלל לטופוגרפית פני השטח כמו הפוטוליתוגרפיה. ניתן להדפיס באמצעותה משטחים קעורים או קמורים ואף משטחים סגורים כמו משטחים פנימיים של מיקרו צינוריות. שיטה זו אינה דורשת כיסוי כל שטח המצע בפוטורזיסט תבנית:אנ, דבר הגורם לזיהום פני המשטח ולקשיים בתהליך קשירתם של קבוצות מולקולאריות למצע. לעומת הפוטוליתוגרפיה הדורשת תהליך רב-שלבי הכולל ציפוי, חשיפה ופיתוח, הליתוגרפיה המגנטית היא חד-שלבית, פשוטה וזולה. בשונה מהשיטות האחרות החושפות את המצע כאשר המסכה מעל פני המצע, השיטה המוצעת היא "ליתוגרפיה גבית" כאשר המסכה נמצאת בגב המשטח המודפס. לליתוגרפיה גבית יש יתרון רב בתהליכים בהם תהליכי כיסוי המשטח הם רב-שלביים, כך שכל שכבה חייבת להיות מותאמת עם כל השכבות האחרות.

אחסון מידע

ננו-חלקיקים מגנטיים מהווים אופציה יעילה וטובה לאחסון מידע על ידי כך שהם מאפשרים להגדיל את צפיפות המידע המוכנסת ליחידת שטח תוך שמירה על רעש קריאה נמוךתבנית:הערה. המטרה היא להחליף את האזור המגנטי היחסית גדול הקיים כיום במדיה המשתמשת בקידוד בעזרת ספין מגנטי כגון בדיסקים קשיחים HD, לשימוש בננו-חלקיק מגנטי אחד שהוא בעל מבנה פשוט של התחום המגנטי. אחת הדוגמאות לכך הם ננו-חלקיקים מגנטיים מסגסוגת של ברזל ופלטינה (FePt)תבנית:הערה. היתרון בננו-חלקיקים אלה שהם לא מאבדים בקלות את המגנטיזציה שהם לאחר הסרת השדה המגנטי החיצוני.

סכנות

כיום אין מידע רב לגבי הרעילות והסכנות שיש בננו-חלקיקים. תהליכי הייצור חושפים את האדם והסביבה לננו-חלקיקים. מחקרים מראים כי החלקיקים יכולים להישאף על ידי מערכת הנשימה ולהגיע לאזורים שונים בגוף, כולל המוחתבנית:הערהתבנית:הערהתבנית:הערה.דבר המעיד, ככל הנראה, על מעבר "מחסום דם-מוח" או מעבר דרך האפיתליום האולפקטורי, Olfactory epithelium תבנית:אנ. השאלה בדבר אגירתם של החלקיקים ברקמות הגוף השונות או דרכי פינויים עדיין פתוחה ולא באה לפתרונה המלא.

מחקר על ננו-חלקיקים מגנטיים הראה כי דלעות שגודלו עם מים המכילים את הננו-חלקיקים קלטו אותם לרקמות של הצמחתבנית:הערה. מכאן, שישנה סכנה מפסולת של ננו-חלקיקים בעת שנפטרים ממנה, היכולה להגיע למי ההשקיה ומשם למזון אותו אנו אוכלים.

סיכון נוסף קיים מהשוני בתכונות החומר כאשר יורדים לרמה הננומטרית והתכונות הפיזיקליות של החומר משתנות לעומת התכונות הקיימות בחומר ברמה המיקרומטרית. כך למשל חומר בממד הננומטרי יכול להיות ריאקטיבי, פלואורסצנטי, מוליך, בעל חוזק רב יותר ואף לקבל תכונות בלתי צפויותתבנית:הערה.

ראו גם

קישורים חיצוניים

תבנית:ויקישיתוף בשורה

הערות שוליים

תבנית:הערות שוליים