קדם-כוכב
קובץ:A Young Star Flaunts its X-ray Spots.ogv קדם-כוכב (באנגלית: Protostar) הוא גרם שמים, המהווה שלב מקדים בהיווצרות כוכב. בשלב זה של מחזור חייו הוא מהווה ענן גז לוהט ומסתחרר, ההולך ומתכווץ עם הזמן. השלב מסתיים עם תחילת התגובות התרמו-גרעיניות בליבתו, בזכותן נעצרת ההתכווצות ונוצר כוכב סדרה ראשית.
הרכבו הכימי של הכוכב העתיד להיווצר מקדם-כוכב מושפע בצורה ניכרת מהצפיפות ומהטמפרטורה של ענן הגז, הקורס לקדם-כוכבתבנית:הערה. מסלול התפתחותו תלוי במסה הראשונית של קדם-הכוכב ממנו הוא נוצר.
תיאור כללי

קדם-כוכב הוא מסה גדולה (מסדר גודל של מספר מסות שמש), הנוצרת מכיווץ ענן מולקולרי של גז ואבק בתווך הבין-כוכבי.
את תהליך היווצרותו של כוכב מענן גז ואבק ניתן לחלק לשלושה שלבים מרכזיים:
- התכווצות איזותרמית (כלומר, בטמפרטורה קבועה) והיווצרות של גרעין צפוף.
- ספיחה של מעטפת רחבה על פני הגרעין
- התכווצות אטית של הגרעין לאחר סיום הספיחה - שלב זה מאפיין רק קדם-כוכבים המתפתחים לכוכבים שמסתם נמוכה מ-3 מסות שמש. השלב מכונה "התכווצות קלווין-הלמהולץ", על שמם של הלורד קלווין והרמן פון הלמהולץתבנית:הערה.
לאחר סיום השלב השני (או השלישי בכוכבים קלים), בליבת קדם-הכוכב מתחילות תגובות היתוך גרעיני, שהן המנגנון האחראי על מרבית האנרגיה שמפיק הכוכב. זהו הרגע בו קדם-הכוכב הופך לכוכב הלכה למעשה. המונח "קדם-כוכב" משמש לתיאור גרם שמים הנמצא בכל אחד מן שלושת השלבים המתוארים, אך על פי רוב מתייחס לשלב השני.
כאשר קדם-כוכבים מוקפים בענן אבק, החוסם ומפזר אור נראה, הצפייה בהם אפשרית בטווח האינפרה-אדום של הספקטרום האלקטרומגנטי. ענן האבק, המקיף את קדם הכוכב, עשוי להפוך במשך הזמן לדיסקה קדם-פלנטרית (Protoplanetary disc); החומר ממנו תיווצר מערכת כוכבי לכת. פרק הזמן הנדרש לשם התפתחותו של קדם-כוכב לכוכב תלוי במסתו (עבור כוכב עם מסה הקרובה למסת שמש אחת, שלב קדם-כוכב נמשך כ-100,000 שנים). תבנית:-
רקע היסטורי

המונח "קדם-כוכב" (במקור ברוסית: Протозвезда, ובהמשך באנגלית: Protostar) נהגה לראשונה על ידי האסטרופיזיקאי הסובייטי ויקטור אמברצומיאןתבנית:הערה והוכנס על ידו לשימוש בסוף שנות ה-40 ותחילת שנות ה-50 של המאה ה-20. במקור, תיאר המונח אובייקטים מסיביים היפותטיים שהתפרקותם מולידה כוכביםתבנית:הערה. עם התפתחות המדע התברר כי כוכבים נוצרים בתהליך שונה לגמרי, אך השם נשמר.
השימוש במונח "קדם-כוכב", במובנו הנוכחי, נעשה לראשונה במאמרם של הפיזיקאים היפניים צ'ושירו הייאשי (Chushiro Hayashi) וטקאנורי נאקנו (Takenori Nakano) ב-1965תבנית:הערה.
על אף שמונח זה יכול לתאר כל שלב התפתחות בין ענן גז ואבק לבין כוכב, לרוב הוא מתאר את שלב ספיחת המעטפת לפני הגרעין. אובייקטים בשלבי ההתפתחות הבאים, לרבות שלב התכווצות הגרעין, נקראים בספרות "אובייקטים כוכביים צעירים" תבנית:אנג או "כוכבים טרום-סדרה ראשית" תבנית:אנג. בספרות הפופולרית והסמי-פופולרית משמש השם "קדם-כוכב" גם לשלבים אלו ולפעמים גם לשלב הקריסה האיזותרמית.
הבסיס התאורטי למנגנון יצירת הכוכבים הונח על ידי צ'ושירו הייאשי ושותפיו שקבעו את תכונות של כוכבים טרום-סדרה ראשית שמאירים תוך כדי התכווצות קוואזי-סטטיתתבנית:הערה השומרת על מסה קבועה. כוכב טרום-סדרה ראשית במסה נמוכה יחסית ואוריות מעל ערך מסוים תואר לראשונה בדיאגרמת הרצשפרונג-ראסל על ידי לואיס הניי, רוברט לה-לווייר (Robert Le Levier) ור.ד לווי ( R. D. Levée) ב-1955. המשך המחקר הראה את חשיבותם של תהליכים תרמו-גרעיניים המוקדמים לשלב בו הכוכב הצעיר מגיע לסדרה הראשיתתבנית:הערה.
חישוביו של הייאשי לא פסלו את האפשרות של צפיפות וטמפרטורה נמוכות מאוד לחומר ממנו בסופו של דבר הכוכב נוצר. עד מהרה נפסלה האפשרות לכך שקדם-כוכב בשלביו הראשונים יכול להיות בשיווי משקל הידרוסטטי. ב-1963 ג'ון גאוסטד( John E. Gaustad) הראה שבתווך רחב של צפיפויות וטמפרטורות הענן הקורס יאבד אנרגיה תרמית מהר מכדי לשמור על שיווי משקל מכני. מכאן הושגה ההבנה השלבים הראשונים של קדם כוכב יכולים להיות מתוארים אך ורק על ידי תהליכים דינמיים ולא סטטיים.
חישובים הידרודינמיים משנות ה-60 הראו שהקריסה הכבידתית של ענן עם תנאי התחלה הנתונים על ידי קריטריון ג'ינס תהיה מאוד לא אחידה. בשנות ה-70, ריצ'רד לארסון (Richard B. Larson) וחוקרים נוספים הגיעו להסכמה כוללת על מבנה של קדם-כוכב הכולל גרעין ומעטפת, אך פרטים אחרים נותרו שנויים במחלוקת. בשנות ה-80 נושא התפתחות הכוכבים היה נושא מחקר מאוד פעילתבנית:הערה והמנגנון העכשווי של הקריסה פותח בתקופה זו.
במקביל למחקר התאורטי, תצפיות אסטרונומיות בתחומי האינפרה-אדום תבנית:אנג והרדיו התקדמו בצעדי ענק וסייעו בקביעת המבנה של עננים מולקולריים מהם נוצרים כוכבים- הן בסקלות של ענן מולקולרי כולו והן בסקלות של אזור מבודד הקורס לכוכב יחידתבנית:הערה. בשנות ה-90 פותחה שיטה לצפות בדיסקות קדם-פלנטריות ולמדוד את המהירות הזוויתית של הקדם כוכב. טלסקופ החלל האבל ששוגר ב-1990 סיפק מידע רחב מאוד על היווצרות הכוכבים וצילומיו שימשו את המדע גם בתחילת המאה ה-21. ב-2003 שוגר טלסקופ החלל שפיצר המצלם בתחום האינפרה-אדום. טלסקופ זה סיפק תצפיות נדירות של קדם-כוכבים שהיו מוסתרים על ידי עננים בלתי חדירים באור נראה ובכך איששו מנגנונים תאורטיים רביםתבנית:הערה.
שלבי התפתחות

לידתו של כוכב מתחילה מענן מולקולרי גדול, מסדר גדול של מספר פרסקים. עננים אלו הם הצטברות דלילה של מימן אטומרי (כלומר מולקולות חד-אטומיות), מימן מולקולרי (כלומר מולקולות ), הליום ואחזור קטן של מתכות. כתוצאה מאינטראקציה כבידתית של הענן עם עצמים שכנים נוצרות בענן הפרעות הגורמות לעליית הצפיפות המקומית של הגז באזורים שונים. גורמים נוספים להפרעות בצפיפות הענן הם גלי הלם של נובות וסופרנובות קרובות, רוח כוכבית של כוכב שכן, התנגשות בין גלקסיות או אינטראקציה כבידתית בין הענן לגל צפיפות בזרוע לוליינית של הגלקסיה.
בשלב הבא מתחיל תהליך הקרוי קריסה כבידתית. עבור הפרעות חזקות מספיק, הכבידה העצמית של האזור בעל הצפיפות המוגברת תגרום לעלייה נוספת בצפיפות כתוצאה מן המשיכה הכבידתית שבין חלקיקי הגז. עלייה זו בצפיפות תגרום לעליית הטמפרטורה ועל כן לעלייה בלחץ. אם הגידול בצפיפות מהיר מספיק, הענן אינו יכול להגיע למצב של שיווי משקל הידרוסטטי בין לחץ הגז לבין הכבידה העצמית. העלייה בצפיפות לא נבלמת והענן מצוי למעשה בשלב של קריסה כוללת. הימצאותו של אבק בגז עוזרת לתהליך ההתגבשות בכך שהוא משמש כזרז לתהליך היווצרות המולקולות (וגז מולקולרי יותר צפוף מגז אטומרי). בנוסף, האבק בולע חלק מהקרינה האולטרה-סגולה שמסוגל לפרק מולקולות בעננים מולקולריים ובכך משמר אותםתבנית:הערה.
כאשר הצפיפות מגיעה לערך קריטי מסוים, הענן נעשה בלתי יציב כבידתית ומתפרק לחלקים קטנים יותר, הניתקים זה מזה. חלקי ענן אלו, מתהווים סביב אזורי הצפיפות הגבוהה של הענן המקורי וממשיכים להתכווץ בלא תלות זה בזה. תהליך הִתְעַבּוּת זה יכול להתרחש במספר שלבים, בהם עננים קטנים יותר מתאחדים חזרה לעננים גדולים יותר או מתחילים לנוע סביב מרכז כובד משותף, מצב העשוי להביא בהמשך להתפתחות צביר כוכבים, מערכת מרובת כוכבים או כוכבים זוגיים. מספר הכוכבים בצביר מושפע מגודלו של חלק הענן הקורס. תצפיות מראות שרק 1-2 אחוז מחומר המרכיב את הענן המולקולרי המקורי קורס לכוכבים. שארית החומר מצטברת סביב הכוכב המתהווה בתצורה של מעטפת אטימה אופטית.
בשלב הבא ענני המשנה עצמם עוברים תהליך נוסף של התעבות וקריסה. בשלב זה לא ניכרים עדיין מאפיינים של כוכב והענן מופיע בעיקר כמקור של קרינה בתחום התת-אדום עם אורך גל של מעל 1000 ננומטר (1 מיקרון). קריסה נוספת זו של ענני המשנה מתרחשת רק כאשר צפיפות החלקיקים מגיעה לסדר גודל של חלקיקים לסמ"ק בטמפרטורה של כ-10 מעלות קלווין. חשוב לציין שהרכב ענן המשנה מכיל עתה גם אבק המפזר את קרינת האור הנראה והופך אותו לאפל בתחום זה.
התכווצות איזותרמית

בתנאים רגילים, התכווצותו של ענן גורמת לעלייה בטמפרטורה ובלחץ הפנימי שלותבנית:הערה, כאשר הלחץ הפנימי הנוצר מפעיל כוח בכיוון מנוגד לזה של הכבידה ובכך מאזן אותה ובולם את הכיווץ. בענן מולקולרי, לעומת זאת, קיים מנגנון קירור קוונטי: ההתנגשויות בין מולקולות המימן גורמות לעלייה ברמות האנרגיה וכתוצאה מכך לפליטה של פוטונים באורך גל של 28 מיקרון. קרינה זו נפלטת אל מחוץ לענן ומורידה בצורה אפקטיבית את הטמפרטורה שלו. במילים אחרות, האנרגיה המשתחררת כתוצאה מכיווץ הענן לא הופכת לאנרגיה תרמית, כבמקרה של גז אידיאלי, ואינה מחממת את הענן, וההתכווצות מתרחשת בתהליך איזותרמי - השומר על טמפרטורה קבועה. פליטת הקרינה במהלך התכווצות ענן לקדם-כוכב מאפשרות לצפות בשלב זה, באמצעות גלאי אור הרגישים לקרינה בעלת אורך גל של מעל 1 מיקרון.
מכיוון שהתכווצות היא איזותרמית, הלחץ בענן עולה בקצב איטי משמעותית ביחס לכוחות הכבידה, ובסופו של דבר, תקופה קצרה אחר תחילת הקריסה, הכוח שמפעיל לחץ הגז הופך לזניח ביחס לכבידה. משמעות הדבר היא שהכיווץ המתרחש מהווה בקירוב נפילה חופשית למרכז המסה של הענן.
עבור ענן במסת שמש אחת ובקוטר של 0.02 פרסק, זמן כיווץ אופייני הוא כ-200,000 שניםתבנית:הערה.
היווצרותו של גרעין צפוף

עם המשכת תהליך התכווצות הענן, צפיפותו הופכת פחות ופחות אחידה, כאשר צפיפות המסה עולה יותר ויותר ככל שמתקרבים למרכז הגאומטרי של הענן. כתוצאה מהצפיפות הגבוהה במרכז הענן, אזור זה מפסיק להיות שקוף לקרינה אינפרה אדומה והפוטונים של קרינה זו אינם יכולים לצאת מחוץ לענן ולקרר אותו, כפי שהיה קודם. הטמפרטורה בו מתחילה לעלות בקצב דרמטי, עד ליצירת שיווי משקל הידרוסטטי, בו לחץ הנוצר בגלל התחממות מצליח להתגבר על הכבידה העצמית.
שימור תנע זוויתי גורם לכך ששאריות הענן החג סביב הגרעין תתכווץ לצורה דמוית דיסקה שטוחה. דיסקה זו קרויה דיסקה קדם-פלנטרית או "proplyd".
עבור ענן במסת שמש אחת, צפויה בשלב זה התעבות של גרעין בעל מסה של כ, רדיוס של כתבנית:הערה וטמפרטורה של כ . כלומר, בשלב זה הגרעין עצמו הוא רחב, דליל מאוד וקר מאוד יחסית לגרעיני גרמי שמיים.
ספיחה של מעטפת רחבה על פני הגרעין

אחר היווצרות הגרעין, המעטפת החיצונית של קדם-הכוכב ממשיכה בנפילתה החופשית אל כיוון מרכז הכובד ומתנגשת בגרעין במהירות של כ-. כתוצאה מהתנגשות זו נוצר גל הדף וטמפרטורת הגרעין עולה.
בהמשך, הכיווץ האיטי של קדם-הכוכב ממשיך לחמם אותו, מכיוון שמנגנון הקירור הקוונטי כבר אינו יעיל. כיווץ הגרעין נמשך עד להגעה לטמפרטורה של 2000K - טמפרטורה בה מתחיל פירוק קשרי המימן המולקולרי ובעקבותיו היינון של האטומים. תהליכים אלו, הדורשים אנרגיה רבה וצורכים אנרגיה תרמית, עוצרים את עליית טמפרטורת הגרעין. כתוצאה משינויים אלו, גרעין הקדם-כוכב יוצא משיווי משקל ומתחיל להתכווץ במהירות ולהתחמם. הליך זה נמשך עד להגעה לשיווי משקל חדש, ותוצאתו הוא גרעין חדש - פלזמטי ולא גזי כשהיה לפני כן.
עבור הפרמטרים שצוינו קודם - ענן בעל מסת שמש אחת - מתקבל גרעין בעל מסה של , רדיוס של כ- וטמפרטורה של , כלומר גרעין צפוף וחם. התחממות הקדם-כוכב בשלב זה מאטה בצורה ניכרת את מהירות התכווצות המעטפת, אך מהירות הנפילה של החומר אל הגרעין עולה אף היא ומוערכת בסדרי גדול של . הטמפרטורה בליבת הקדם-כוכב ממשיכה לעלות והקרנתה לא מספיקה לסלק את האנרגיה החוצה מן הליבה. בשלב זה הסעת חום (קונבקציה) הופכת למשמעותית, והחומר בליבת הקדם-כוכב מתחיל לנוע מאזור המרכז החם יותר לעבר פני הקדם-כוכב, בהם הלחץ נמוך משמעותית. מאחר שמהירות התנועה של האזורים החמים גבוהה בהרבה ממהירות הולכת החום, אזורים אלו מתרחבים בעת העלייה בתהליך אדיאבטיתבנית:הערה למדי - כלומר, כמעט בלא העברת חום לסביבה. במנגנון זה, הליכי התפלגות הטמפרטורה, הלחץ והצפיפות כולם אדיאבטיים בקירוב.
שלב ספיחת המעטפת בקדם-כוכב מתאפיין בין היתר בירידת צפיפות הענן עם ההתרחקות מן המרכז. הכבידה משחקת תפקיד מרכזי בהתרחשות זו, מאחר שהכיווץ נעשה בנפילה חופשית בקירוב. הזמן האופייני לנפילה חופשית, , עולה עם הירידה בצפיפות, ולכן האזורים הפנימיים מתכווצים מהר יותר מהאזורים החיצוניים. כתוצאה מכך, פילוג הצפיפות הולך ונהיה פחות ופחות אחיד עם הזמן.
תהליך זה נמשך עד שכל המעטפת מסופחת לגרעין.
עבור ענן במסת שמש אחת, וצפיפות התחלתית של כ- (כלומר, צפיפות המתאימה לאי יציבות ג'ינס), משך התהליך מוערך בכמיליון שניםתבנית:הערה - כלומר, פי 3 עד 5 מזמן הנפילה החופשית -, ורדיוס הכוכב הצעיר שייווצר הוא כ-2 רדיוסי שמש. במקרה בו הצפיפות ההתחלתית גבוהה יותר, זמן הקריסה יתקצר ורדיוס הכוכב הצעיר יגדל.
גרם שמיים בשלב זה מקרין אור נראה בעצמה גבוהה ונראה לצופה מכדור הארץ כמו כוכב. ההבדל המרכזי בין קדם-כוכב בשלב זה לכוכב סדרה ראשית הוא שבליבת הקדם-כוכב לא מתרחשים תהליכי היתוך גרעיניים (כדוגמת שרשרת פרוטון-פרוטון), כי הטמפרטורה בו נמוכה מדי ועומדת על כ- .
שלב זה של בהתפתחות הכוכב מתואר בדיאגרמת הרצשפרונג-ראסל. כוכבי T בשור וכוכבי הרביג Ae/Be הם דוגמאות לגרמי שמיים הנמצאים בשלב זה.
תחשיבי נתונים מצביעים על כךתבנית:הערה שבשלב הקונבקציה הטמפרטורה של הקדם-כוכב תלויה באופן מועט במסה, וכמעט שאינה תלויה באוֹרִיּוּת תבנית:אנג: . משמעות הדבר היא שעם ירידת הרדיוס, יורדת האוריות של הכוכב. בדיאגרמת הרצשפרונג-ראסל כוכבים צעירים כאלה מופיעים "מעל" הסדרה הראשית ו"יורדים" אליה עם הזמן. מסלול התפתחות זה מכונה "מסלול הייאשי".
כוכבים בעלי מסה קטנה מ-0.3 מסות שמש ממשיכים להיות קונבקטיביים בשלמות - כלומר, הסעת החום בהם מתרחשת לאורך כל הכוכב, גם כשמגיעים לסדרה הראשית. בכוכבים קלים, אך בעלי מסה הגדולה מ-0.3, נוצרת ליבה בה האנרגיה מועברת על ידי פליטת קרינה, דבר המעלה את טמפרטורת פני השטח. מסלול התפתחות זה מכונה "מסלול הניי" (אנגלית: Henyey track).
עבור מסת ליבה העולה על 3 מסות שמש, תגובות גרעיניות יחלו לפני ספיחת הקליפה האטומה כולה. גופים כאלה נצפו בגלאי אור אינפרה אדום ונראים כאזורי מימן מיונן המוקפים בענן קר.
לא כל הקדם-כוכבים עתידים להפוך לכוכבים. אם מסת קדם-כוכב קטנה מ-0.075 מסות שמש, הכיווץ שלו ייבלם על ידי לחץ הניוון של אלקטרוני הגז (לחץ הנובע מעקרון האיסור של פאולי) ולא ייווצרו התנאים הנדרשים להיתוך מימן. קדם-כוכב כזה יהפוך לננס חום.
התכווצות קלווין-הלמהולץ

בקדם-כוכב בעל מסה הקטנה מ-3 מסות שמש, תהליך ההתכווצות יימשך עד שהטמפרטורה בליבה תעלה לטמפרטורה המספיקה להתרחשות תגובות תרמו-גרעיניות (בסביבות 3 מיליון מעלות קלווין). התכווצות זו אטית בהרבה מזו המאפיינת את השלבים קודמים: עבור כוכב במסת שמש אחת הליך זה מוערך בכ- שנים. עבור ננסים אדומים בעלי מסה נמוכה יותר, שלב זה יכול לקחת מיליארדי שנים - כלומר, משך זמן מסדר גיל היקום.
כוכבים בשלב זה נראים באור נראה מכדור הארץ ולכן נצפו הרבה לפני פיתוח המודל המודרני של קדם-כוכב. מחלקה זו של גרמי שמיים נקראת כוכבי T בשור, על שם הכוכב הראשון מסוג זה שהתגלה - T בקבוצת שור (Taurus). כוכבים אלו הם קרים, ובהירותם משתנה באופן מהיר. שינויים אלו נובעים מתהליכי קונבקציה סוערים בתוך הכוכב. אחד המאפיינים הבולטים של כוכב כזה הוא קו בליעה של ליתיום, שריכוזו גבוה בהרבה מריכוז הליתיום בשמש, דבר המעיד על כך שתהליכי ההיתוך בהם "נשרפים" יסודות קלים (כלומר תהליכי נוקליאוסינתזה של פחמן ויסודות כבדים יותר) טרם החלו. מקור האנרגיה העיקרי שלהם הוא קריסה כבידתית, ולא היתוך גרעיני כמו בכוכבי סדרה ראשית.
בדיאגרמת הרצשפרונג-ראסל כוכבים צעירים אלו ממוקמים מעל הסדרה הראשית. הם נצפים בקבוצות הנקראות "T-associations" החופפות לעיתים את קבוצות "O Associations"תבנית:הערה. בקבוצות מסוג זה נראים לעיתים קרובות גם ענני אבק וכוכבים צעירים מסוגים A ו-B (בשלב כוכבי הרביג Ae/Be).
סילון קדם-כוכבי

כאשר קדם-כוכב צעיר חג סביב עצמו, אחת התוצאות היא פליטה של סילוני גז מולקולרי מיונן מקוטבי הקדם-כוכב, המושלכים למרחקים גדולים. סילונים אלו נקראים סילונים קדם-כוכביים (Protostellar Jets). פליטות אלו, הנצפות בקלות יחסית בשל גודלם, מעידות על צעירותו של גרם שמים. המנגנון המדויק של סילונים אלו, של האצתם וכוונתם, טרם פוענח.
סילונים כאלו, היכולים להגיע למרחקים של שנות אור, נצפו רבות באובייקטי הרביג-הרו (אנגלית: Herbig–Haro object). נצפו גם מקרים בהם חומר עזב את הכוכב הצעיר במהירויות של מאות קילומטרים בשנייה. בעשרה מקרים שונים, בנוסף לחומר היוצא, נצפתה גם קרינת רנטגן, דבר המצביע על כך שמהירות הסילונים היא מעל 500 קילומטרים לשנייה: על מנת להגיע למהירויות כאלה, החומר צריך לעזוב את פני הכוכב במהירות העולה על 1000 קילומטרים לשנייה, מהירות הגדולה בהרבה ממהירויות שנצפו במקרים דומים אחריםתבנית:הערה.
תצפיות

הצפייה באור נראה, בקדם-כוכב במרבית השלבים, אינה אפשרית לצופה מכדור הארץתבנית:הערה. גרם שמיים זה מוסתר מרבית הזמן על ידי ענן צפוף של אבק וגז, שאריות הענן המולקולרי ממנו התהווה. לעיתים ניתן להבחין בצללית של קדם כוכב על רקע אור חזק הנפלט מגז הקרוב אליו - אובייקטים המכונים "גלובולות בוק" תבנית:אנגתבנית:הערה. עם זאת, שלבים מוקדמים בחיי כוכב ניתנים לצפייה באור אינפרה-אדום בלבד, החודר אבק. מסיבה זו, תצפיות מטלסקופ החלל WISE, המסוגל לצלם בתחום האינפרה-אדום, היוו חלק משמעותי במיוחד בגילוי של קדם-כוכבים וצבירי הכוכבים הנוצרים מהםתבנית:הערה.
המבנה של ענן מולקולרי והאפקטים האופייניים לתהליכי היווצרות קדם-כוכבים מאפשרים זיהוי של קדם-כוכבים באמצעות מפות הכחדה (בליעה ופיזור) תבנית:אנג של אור אינפרה-אדום קרוב (מפות המשורטטות מתוך השוואת אומדן כמות הכוכבים ליחידת שטח, הנצפים באינפרה-אדום קרוב, לתמונת השמיים המתקבלת בצפייה באור נראה בה הללו נבלעים), ולפי ספקטרום הפליטה הרציף של אבק וקווי הספקטרום האופייניים למעברי אנרגיה קינטית זוויתית במולקולות פחמן חד-חמצני ומולקולות אחרות, הנצפים בתחום התת-מילימטרי. מאחר שלרוב, שארית הענן העוטפת קדם-כוכבים וכוכבים צעירים חוסמת את מעבר מרבית האור הנראה, הצפייה בקדם-כוכבים ובכוכבים צעירים נעשית בטווחי האינפרה-אדום. בשל כך תצפיות בקדם-כוכבים וכוכבים צעירים מכדור הארץ הן בעייתיות - אטמוספירת כדור הארץ אטומה כמעט לחלוטין לקרינה באורכי גל בין 20 ל-850 מיקרון, ולכן התצפית בקדם-כוכבים יעילה רק מטלסקופים הנמצאים מחוץ לאטמוספירה.
ניתן לצפות בצורה ישירה בהיווצרות כוכבים בודדים בגלקסיה שלנו, אך לא בגלקסיות אחרות - באלו ניתן להבחין רק לפי החותמת הספקטרלית שהם מותירים.
ראו גם
| מחזור החיים של כוכב (לא בקנה מידה) | |||
| <imagemap>
תמונה:Stellar_evolution_Hebrew.png|680px rect 46 427 196 530 ננס שחור rect 331 429 486 529 ננס לבן rect 41 220 196 342 כוכב נייטרונים rect 41 35 203 140 חור שחור rect 1385 607 1226 386 ענק אדום rect 1528 545 1687 420 ננס צהוב rect 932 311 1102 42 סופרנובה rect 626 457 886 600 ערפילית פלנטרית rect 626 155 785 381 שארית סופרנובה rect 1426 343 1200 36 על־ענק אדום rect 1528 289 1687 98 ענק כחול rect 1528 617 1687 719 ננס אדום rect 1528 749 1687 836 ננס חום rect 1994 338 2154 655 קדם־כוכב rect 2208 301 2387 655 ענן מולקולרי rect 1710 863 2400 970 היווצרות כוכב rect 1495 863 1690 970 כוכב יציב rect 1200 863 1395 970 שלבים אחרונים של היתוך rect 25 863 1100 970 קריסת כוכב desc none </imagemap> | |||
| = מסת שמש, כ־תבנית:כ2 x 1030 תבנית:כק"ג
מסת כוכב בעת היווצרותו: מסה קטנה מאד - פחות מ־ 0.08 לערך, מסה קטנה - בטווח 0.08 - 0.4 לערך, מסה בינונית - בטווח 0.4 - 8 לערך (לאחר הקריסה המסה קטנה, פחות מ־ 1.44 לערך), מסה גדולה - לפחות 8 לערך (לאחר הקריסה המסה היא לפחות 1.44 לערך) הערה: במצבים בהם כוכב מסוים סופח אליו מסה - הוא עשוי לעבור למחזור חיים של מסה גבוהה יותר. לדוגמה: אם ננס לבן במערכת זוגית סופח אליו חומר מבן זוגו, המגדילה אותו מעבר לגבול צ'נדראסקאר ( 1.44), הוא יכול לעבור סופרנובה מסוג Ia שבסופה ייווצר כוכב נייטרונים (במקום ננס שחור). | |||
קישורים חיצוניים
- קדם כוכב צעיר(אנגלית) מצולם על ידי טלסקופ החלל האבל
- Spitzer's Orion(אנגלית) - Astronomy Picture of the Day
- Stellar Evolution - Star Birth and Formation (אנגלית) אתר BestThinking
- Protostellar jets אתר Laserstars
- Protostellar Jets (אנגלית) בערוץ SpitzerScienceCenter.
- Pre-main-sequence evolution and the birth population(אנגלית),In: Protostars and planets III (A93-42937 17-90), p. 405-428.
- צ'ילה: טלסקופ צילם כוכב נולד במרחק 1,400 שנות אור בלבד מכדור הארץ, אתר הידען
- Star-Formation (אנגלית) כולל קדם-כוכב בדיאגרמת HR ומספר הדמיות אומן