פלואורסצנציה

מתוך testwiki
קפיצה לניווט קפיצה לחיפוש
מינרלים פלואורסצנטיים פולטים אור נראה כאשר נחשפים לאור על-סגול
אורגניזמים ימיים ביו-פלואורסצנטיים
וילמיט וקלציט ב-UV

פְלוּאוֹרֶסְצֶנְצְיָה (או פלואורסצנטיות; באנגלית: Fluorescence; בעברית גם: פְלוּאוֹרָנוּת, זְהִירָה) היא פליטה של אור מחומר שנחשף לאור, לרוב בצבע שונה.

היא סוג של לומינסנציה והגדרתה היא פליטה ספונטנית של אור ממולקולה הנמצאת במצב מעוֹרָר, כתוצאה מבליעת אור או קרינה אלקטרומגנטית, כאשר ברוב המקרים אורך הגל של האור הנפלט יותר גדול מאורך הגל של האור הנבלע.

בשונה מסוגים אחרים של לומינסנציה כגון פוספורסצנציה, זמני החיים של תופעה זו קצרים יחסית והם מאופיינים בסדר גודל של ננו-שניות.

בדומה לפיזור ראמאן, גם פלואורסצנציה היא דוגמה להיסט סטוקס אף כי שני התהליכים מביאים לתוצאה זהה — פליטת אור באורך גל גדול יותר ("אדום" יותר) — ישנם 2 הבדלים בין התופעות:

  • בפלואורסצנציה אין פיזור ואנרגיית העירור נבלעת לחלוטין.
  • פיזור ראמאן, בניגוד לפלואורסצנציה, אינו מוגבל לטווח תדרים/אורכי גל בבליעה ולכן אינו נחשב תופעה תהודתית.

לפלואורסצנציה יש יישומים פרקטיים רבים הכוללים: מינרלוגיה, גמולוגיה, רפואה, חיישנים כימיים (ספקטרוסקופיה פלואורסצנטית), תיוג פלואורסצנטי, צבענים, גלאים ביולוגיים, גילוי קרניים קוסמיות ונורות פלואורסצנטיות.

היסטוריה

כוס עץ העשויה מעץ הנארה מלאה בתמצית מעץ הכליות, ובקבוק המכיל את תמיסתו הפלואורסצנטית.

עדות ראשונה לתופעת הפלואורסצנציה תוארה ב-1560 על ידי ברנרדינו דה סאגון בקודקס הפלורנטיני וב-1565 על ידי ניקולס מונדרס בהקשר לתרופה ששימשה כחומר משתן והופקה מעץ שכונה "עץ הכליות".תבנית:הערהתבנית:הערהתבנית:הערהתבנית:הערה התרופה נודעה בתכונתה לשנות את הצבע של המים בהתאם לאור ולזווית פגיעתו.

בשנת 1822 תיאר רנה ז'יסט אאיאי את התופעה בפלואוריט, ב-1833 תיאר סר דייוויד ברוסטר את הפלואורסצנציה בכלורופיל וב-1845 עשה זאת סר ג'ון הרשל לגבי כינין.תבנית:הערהתבנית:הערהתבנית:הערה

במאמרו על "Refrangibility" (שינוי אורך הגל) של האור, תיאר ג'ורג' גבריאל סטוקס את היכולת של גביש פלואוריט וזכוכית אורניום לשנות אור אולטרה סגול בתחום הלא נראה לאור כחול.

הוא כינה תופעה זו פלואורסצנציה:תבנית:הערה

תבנית:ציטוט

השם נגזר מהמינרל פלואוריט (סידן דו פלואורידי - CaF2), שלעיתים מכיל עקבות של אירופיום די ולנטי (2−Eu) אשר משמש זרז פלואורסצנטי לפליטת אור כחול.

בניסוי נוסף השתמש סטוקס במנסרה כדי לבודד קרינה אולטרה סגולה מאור השמש והבחין באור כחול שנפלט מתמיסת אתנול ובכך נחשף שהכילה את הפלואורופור כינין.תבנית:הערה

עקרונות פיזיקליים

דיאגרמת יבלונסקי של מולקולה אורגנית. ציר ה-Y מבטא אנרגיה ביחס למצב היסוד של המולקולה, קווים מלאים מתארים מעברים קרינתיים (מלווים בליעה או פליטה של פוטון) וקווים שבורים מתארים מעברים לא קרינתיים. משמאל: מעברים בבליעה מרמת היסוד לרמות סינגלט מעוררות (כיוון שמהמעבר האלקטרוני מהיר מסידור האטומים המולקולה תהיה במצב מעורר ויברציונית מיד לאחר הערור), במרכז: מעבר מהמצב המעורר S1 לרמת היסוד (שוב, לרמות ויברציה מעוררות) המלווה בפליטת פוטון - פלואורסצנציה, מימין: דעיכה מרמת טריפלט לרמת היסוד: פוספורסצנציה

פוטוכימיה

תבנית:ערך מורחב

פלואורסצנציה מתרחשת כאשר אלקטרון הנמצא באורביטל מולקולרי, באורביטל אטומי או בננו-מבנה, מבצע רלקסציה מרמת סינגלט מעוררת לרמת היסוד על ידי פליטת פוטון:

  • עירור: S0+hνexS1
  • פלואורסצנציה (פליטה): S1S0+hνem+heat

כאשר hν הוא ביטוי כללי לאנרגיית פוטון, מכפלת קבוע פלאנק hבתדירות ν. התדירויות הספציפיות לעירור ולפליטה νex,νemתלויות בסוג החומר.

S0 נקרא מצב היסוד של הפלואורופור (מולקולה פלואורסצנטית), ו-S1 היא רמת הסינגלט המעוררת הראשונה (אלקטרונית).

מולקולה ב- S1יכולה לעבור רלקסציה בכמה תהליכים שונים מתחרים:

ברוב המקרים, לאור הנפלט יש אורך גל ארוך יותר, ולכן אנרגיה נמוכה יותר, מאשר הקרינה שנספגה. תופעה זו ידועה בשם היסט סטוקס. עם זאת, כאשר הקרינה האלקטרומגנטית הנספגת חזקה, מתאפשר לאלקטרון אחד לבלוע שני פוטונים. בליעה דו פוטונית זו יכולה להוביל לפליטת קרינה בעלת אורך גל קצר יותר מאשר הקרינה הנספגת. הקרינה הנפלטת עשויה גם להיות באותו אורך גל כמו קרינה נספגת, המכונה "קרינת תהודה".תבנית:הערה

מולקולות מעוררות באמצעות בליעת אור או תהליך אחר (למשל כתוצר של תגובה) יכולות להעביר אנרגיה למולקולה "מעוררת" שנייה, אשר מומרת למצב המעורר שלה ויכולה לפלוט אור פלואורסצנטי.

דיאגרמת יבלונסקי

תבנית:ערך מורחב

דיאגרמת יבלונסקי מתארת את רוב מנגנוני הרלקסציה למולקולות במצב מעורר. התרשים מראה כיצד פלואורסצנציה מתרחשת עקב רלקסציה של אלקטרונים מעוררים מסוימים של המולקולה.תבנית:הערה

נצילות קוונטית

תבנית:ערך מורחב הנצילות הקוונטית הפלואורסצנטית מבטאת את היעילות של תהליך פלואורסצנטי. הנצילות מוגדרת כיחס בין מספר הפוטונים שנפלטו לבין מספר הפוטונים שנבלעו:תבנית:הערהתבנית:הערה

Φ=# photons emitted# photons absorbed

הנצילות הקוונטית הפלואורסצנטית המקסימלית האפשרית היא 1 (100%) - במצב זה, כנגד כל פוטון שנבלע יש פוטון שנפלט. גם תרכובות עם נצילות קוונטית נמוכה של 0.1 (10%) עדיין נחשבות פלואורסצנטיות.

דרך נוספת להגדיר את הנצילות הקוונטית של הקרינה היא על ידי קצב הדעיכה של המולקולה מהרמה המעוררת לרמת היסוד:

Φ=kfiki

כאשר kf הוא קצב הרלקסציה של המולקולה על ידי פליטה ספונטנית כתוצאה מהתהליך הפלואורסצנטי לבדו ואילו ikiהוא סכום קצבי הרלקסציה של המולקולה כתוצאה מכל התהליכים האפשריים (מעבר לא קרינתי (חום), פוספורסנציה, אינטראקציה עם מולקולה שנייה וכו').

זמן חיים

זמן חיים פלואורסצנטי מתייחס לזמן הממוצע שבו המולקולה נשארת במצב מעורר לפני פליטת פוטון. פלואורסצנציה ניתנת לתיאור על ידי משוואת קצב קינטית מסדר ראשון:

[S1]=[S1]0eΓt

כאשר [S1]הוא ריכוז המולקולות במצב מעורר בזמן t, [S1]0הוא ריכוז המולקולות במצב מעורר ההתחלתי (בזמן t=0) ו-Γהוא קצב הדעיכה ההופכי לזמן החיים הפלואורסצנטי, Γ=1τf.

זוהי דוגמה קלאסית לדעיכה מעריכית. תהליכים קרינתיים ולא קרינתיים שונים יכולים לגרום לאי אכלוס של הרמה המעוררת ולכן קצב הדעיכה הכללי, Γtot, הוא הסכום של קצב התהליכים הקרינתיים, Γrad וקצב התהליכי הלא קרינתיים Γnrad :

Γtot=Γrad+Γnrad

עבור תרכובות פלואורסצנטיות נפוצות, טווח זמני הרלקסציה האופייניים עבור פליטת פוטון מ-UV עד אינפרא אדום, נע בין 0.5 עד 20 ננו-שניות. זמן חיים פלואורסצנטי הוא פרמטר חשוב עבור יישומים מעשיים כגון: FRET ו-FLIM תבנית:אנ.

פלואורופור (כרומופור של חלבון פלואורסצנטי ירוק) בעל מומנט דיפול המשתנה בהתאם למצבו האנרגטי. כיוון הדיפול הוא מהאזור השלילי במולקולה לאזור החיובי, בהתאם לאלקטרושליליות של האטומים המרכיבים את המולקולה.

אנאיזוטרופיות

תבנית:ערך מורחב

פלואורופורים נוטים יותר להיות מעוררים על ידי פוטונים אם מומנט המעבר הדיפולי של הפלואורופור מקביל לווקטור החשמלי של הפוטון.תבנית:הערה גם הקיטוב של האור הנפלט תלוי במומנט המעבר. מומנט המעבר הדיפולי תלוי בכיוון הפיזי של מולקולת הפלואורופור. עבור מולקולה הנתונה בתמיסה זה אומר כי עוצמת הקיטוב של האור הנפלט תלויה בדיפוזיה סיבובית. לכן, ניתן להשתמש במדידות אנאיזוטרופיות כדי לחקור תנועה של מולקולה בסביבה מסוימת.

כמותית ניתן להגדיר אנאיזוטרופיות כך:

r=III+2I

כאשר Iהיא העוצמה הנפלטת בכיוון המקביל לקיטוב האור המעורר ואילו Iהיא העוצמה נפלטת בכיוון מאונך לקיטוב האור המעורר.תבנית:הערה

חוקים

סכמה של חוק קאשה. פוטון עם אנרגיה hν1מעורר אלקטרון של רמת הבסיס, של אנרגיה E0, עד לרמת אנרגיה מעוררת (E1או E2) או עד לאחת מרמות המשנה הויברציוניות.
תרשים לאנרגיית פרנק קונדון. בורות הפוטנציאל מראים שהמעבר העדיף הוא בין v = 0 לבין v = 2.
קובץ:Raman Scattering Energies - Heb.PNG
מעברי הרמות בפיזור ראמאן.

חוק קאשה

החוק קובע כי הנצילות הקוונטית של לומינסציה אינה תלויה באורך הגל של קרינת העירור.[1] הסיבה לתופעה נעוצה בכך שבמולקולה מעוררת בדרך כלל מתרחשת דעיכה לרמה הוירבציונית הנמוכה ביותר של רמת העירור בטרם מתרחשת פלואורסצנציה. חוק זה ניתן לניסוח באופן אחר: ספקטרום הפלואורסצנציה כמעט ואינו תלוי באורך הגל של קרינת העירור.

חוק דמות מראה

עבור פלואורופורים רבים ספקטרום הפליטה הוא דמות מראה של ספקטרום הבליעה. חוק זה קשור לעיקרון פרנק-קונדון הקובע כי מעבר בין 2 רמות אנרגיה ויברציוניות אפשרי ושכיח יותר אם פונקציות הגל של 2 הרמות מתלכדות ולכן הרמות הויברציוניות של רמת העירור דומות לרמות הויברציוניות של רמת היסוד.

היסט סטוקס

תבנית:ערך מורחב

ייצוג סכמטי של ספקטרום הבליעה והפלואורסצנציה על פי אנרגיית פנרק קונדון הסימטריה נובעת מהצורה השווה של בורות הפוטנציאל ברמת היסוד וברמה המעוררת.

באופן כללי, לאור הנפלט בפלואורסצנציה יש אורך גל ארוך יותר ואנרגיה נמוכה יותר מהאור הנבלע. תופעה זו, הידועה בשם היסט סטוקס, נובעת מאובדן אנרגיה בין הזמן שבו הפוטון נבלע, לבין הזמן שבו הוא נפלט. הגורמים וסדר הגודל של היסט סטוקס יכולים להיות מורכבים והם תלויים בפלואורופור ובסביבתו. עם זאת, יש כמה סיבות נפוצות. לעיתים קרובות ישנה דעיכה לא קרינתית לרמה הויברציונית הנמוכה ביותר של רמת העירור. גורם נוסף הוא שהפליטה מותירה את הפלואורופור ברמה ויברציונית גבוהה יותר מרמת היסוד.

פלואורסצנציה בטבע

ביופלואורסצנציה

התופעה מוגדרת כבליעת גלים אלקטרומגנטיים בתחום האור הנראה על ידי חלבונים פלואורסצנטיים באורגניזם חי ופליטת אור באנרגיה נמוכה יותר. צבע האור הנפלט שונה מצבע האור הנבלע. האלקטרון המעורר, עולה לרמה לא יציבה. חוסר היציבות של הרמה גבוה מאוד שכן חזרת האלקטרון לרמת היסוד היציבה מתרחשת כמעט מיידית. . חזרה זו תואמת לשחרורו של עודף אנרגיה בצורה של אור פלואורסצנטי. פליטת אור זו ניתנת לצפייה רק כאשר האור הממריץ עדיין מספק אור לאורגניזם והוא בדרך כלל צהוב, ורוד, כתום, אדום, ירוק או סגול.

ביופלואורסצנציה בתגובה לאור אולטרה סגול נמצאה במיני יונקים רבים, רובם פעילי לילה או פעילי דמדומים. אך יש גם פעילי יום זוהרים, כגון זברה ודוב קוטב. לכל היונקים - כולל האדם - שיניים זוהרות[2].


אין לבלבל תופעה זו עם תופעות אור דומות:

ביולומינסנציה

תבנית:ערך מורחב ייצור ופליטת אור על ידי אורגניזם חי כתוצאה מריאקציה כימית שבה אנרגיה כימית הופכת לאנרגיית אור. בניגוד לביופלואורסצנציה אין הארה חיצונית שגורמת לעירור.

ביופוספורסצנציה

תופעה בה אנרגיה ממקור אור חיצוני נקלטת על ידי חלבונים פלואורסצנטיים באורגניזם חי ומשוחררת זמן מה לאחר מכן באורך גל ארוך יותר. בניגוד לביופלואורסצנציה זמן החיים של התופעה ארוך יותר.

מכניזמים של ביופלואורסצנציה

כרומטופוריה אפידמרלית

דגי ים פלואורסצנטיים

תאי פיגמנט המציגים פלואורסצנציה נקראים כרומטופורים פלורוסצנטיים, והם מתפקדים באופן דומה לכרומטופורים רגילים. תאים אלה הם דנדריטים, ומכילים פיגמנטים הנקראים פלואורוזומים. פיגמנטים אלה מכילים חלבונים פלואורסצנטיים המופעלים על ידי יוני K + (אשלגן). התנועה, הצבירה והפיזור שלהם בתוך הכרומטופור הזוהר הם הגורמים לדפוס פלואורסצנטי מכוון.[3][4] כמו כרומטופורים אחרים כגון מלנופורים, גם תאי פיגמנט מכילים מלנין. מערכת העצבים נשלטת על ידי דפוס פלואורסצנטי לטווח קצר.[3] ניתן למצוא כרומטופורים פלואורסצנצטיים בעור (למשל בדגים) ממש מתחת לאפידרמיס.

פלואורסצנציה מימית

מים בולעים אור באורכי גל ארוכים כך שפחות אור מאורכי הגל הללו משתקף חזרה ומגיע לעין. לכן, צבעים חמים מספקטרום האור הנראה נראים פחות תוססים בעומקים הולכים וגוברים. מים מפזרים אור באורך גל קצר יותר מעל סגול, כלומר צבעים קרירים יותר חולשים על שדה הראייה באזור הצילום. עוצמת האור פוחתת פי 10 עם כל 75 מטר של עומק, כך שבעומק של 75 מטר, עוצמת האור היא % 10 מהעוצמה על פני השטח, ואילו בעומק של 150 מטר העוצמה היא רק % 1 מהעוצמה על פני השטח. בגלל סינון זה של האור, ניתן לראות חומרים שונים בעומקים שונים.[5][6][7]

דגים

לדגי גרם החיים במים רדודים בדרך כלל יש ראיית צבעים טובה בגלל מגוריהם בסביבה צבעונית. לפיכך, בדגי מים רדודים, פלואורסצנציה אדומה, כתומה וירוקה משמשת ככל הנראה אמצעי לתקשורת.[5]

דגים רבים המציגים פלואורסצנציה, כמו כרישים, דגי לטאה, דגי עקרב, דגי נוי ודגים שטוחים, הם בעלי מסנן תוך-עיני צהוב. מסננים אלו מאפשרים לדגים לשפר את הניגודיות והדפוסים הוויזואליים שלא נראים לעין דגים וטורפים אחרים חסרי תכונה זו.[8]

אלמוגים

פלואורסצנציה משמשת למגוון רחב של פונקציות באלמוגים. חלבונים פלואורסצנטיים באלמוגים עשויים לתרום לפוטוסינתזה על ידי המרת אורכי גל שאינם שמישים אחרת לאלה שעבורם האצות הסימביוטיות של האלמוגים מסוגלות לבצע פוטוסינתזה.[9] כמו כן, החלבונים עשויים להשתנות במספרם ע"פ מידת האור הנבלע. [39] באופן דומה, חלבונים פלואורסצנטיים אלו עשויים להיות בעלי יכולות נוגדות חמצון כדי לחסל רדיקלי חמצן המיוצרים על ידי פוטוסינתזה.[10] במילים אחרות, באמצעות אפנון פוטוסינתזה, החלבונים הפלואורסצנטיים משמשים כאמצעי לוויסות הפעילות של סימביוני האצות הפוטוסינתטיים של האלמוגים.[11]

Aequorea victoria, מדוזה ביו-פלואורסצנטית הידועה כנשאית GFP

סילוניות

ל- Subulata Alloteuthis ו- Loligo vulgaris, שני סוגים של דיונונים כמעט שקופים, יש כתמים פלואורסצנטיים מעל עיניהם. כתמים אלה מחזירים את האור הפוגע ומשמשים לצורכי הסוואה ותקשורת.[12]

מדוזה

דוגמה נוספת ידועה לפלואורסצנציה באוקיינוס היא ההידרה Aequorea victoria. מדוזה זו חיה באזור מול חופה המערבי של צפון אמריקה וזוהתה כנשא של חלבון פלואורסצנטי ירוק (GFP) על ידי אוסאמו שיממורה. הגן של חלבונים פלואורסצנטיים ירוקים משמעותי מבחינה מדעית במחקרים גנטיים כדי להצביע על ביטוים של גנים אחרים.[13]

טרפידים

לכמה מינים של טרפידים יש סימנים פלואורסצנטיים צהובים לאורך קשקשתם לצורכי הגנה מפני טורפים. במהלך טקסי הזדווגות, הטרפיד זוהר באופן פעיל ופולט אורך גל שיכול להקלט אצל טרפידים אחרים.[14]

פלואורסצנציה יבשתית

תצלום ראש של זבובאי שהתקבל ממיקרוסקופ פלואורסצנטי. ניתן לראות בו את הפלואורסצנציה[15] של העיניות הפשוטות ועיני התשבץ המורכבות מאומטידיומים, שבראש החרק.

דו-חיים

צפרדע העץ נקודת פולקה תבנית:אנ, הנפוצה באמזונאס, התגלתה כדו חיים הפלואורסצנטי הראשון בשנת 2017. עור הצפרדע הוא בעל צבע ירוק בהיר עם נקודות בצבע לבן, צהוב או אדום בהיר. הפלואורסצנציה של הצפרדע התגלתה שלא במתכוון בבואנוס איירס, ארגנטינה. את הפלואורסצנצי ניתן לייחס לתרכובת חדשה שנמצאה בלימפה ובעור.[16] התרכובת הפלואורסצנטית העיקרית היא Hyloin-L1 והיא מעניקה זוהר כחול-ירוק כאשר היא נחשפת לאור סגול או על-סגול. מדענים העומדים מאחורי התגלית מציעים כי הפלואורסצנציה משמשת לצורכי תקשורת. הם גם מעריכים כי כמאה או 200 מינים של צפרדעים עשויים להיות פלורסצנטיים.[17]

פרפרים

לפרפרי זנב הסנונית יש מערכות מורכבות לפליטת אור פלואורסצנטי. כנפיהם מכילות גבישי פיגמנט המספקים אור פלואורסצנטי בצורה ישירה: כאשר הם בולעים אור רדיומטרי מאור השמיים הכחול

(אורך גל של 420 ננומטר), הם פולטים אור פלואורסצנטי. קרינה זו משמשת לצורכי תקשורת עם פרפרים אחרים.[18]

תוכאים

לתוכאים יש פלומת פלואורסצנטית שעשויה לשמש באיתות בתהליך זיווג. מחקר שנערך בתוכונים מצויים הראה כי זכרים ונקבות העדיפו משמעותית ציפורים עם הפיגמנט הפלואורסצנטי. ממחקר זה עולה כי הפלומה הקורנת של התוכיים אינה סתם תוצר לוואי של פיגמנטציה, אלא איתות מיני מובנה.[19]

עכבישניים

עכבישים זוהרים תחת אור UV ומכילים בתוכם מגוון עצום של פלואורופורים.[20]

גם עקרבים זוהרים בגלל נוכחות של בטא קרבולין בציפורן שלהם.[21]

עקרב פלואורסצנטי

צמחים

פרח הלילנית הרב-גונית תבנית:אנ מכיל פיגמנטים צהובים וסגולים פלואורסצנטיים. תחת אור לבן, חלקים מהפרח המכילים רק בטא-קסנטינים נראים צהובים, אך באזורים בהם קיימים גם בטא-קסנטינים וגם בטא-ציאנינים, הפלואורסצנציה דוהה בגלל מנגנוני סינון פנימיים.[22]

הכלורופיל הוא ככל הנראה המולקולה הפלואורסצנטית הנפוצה ביותר ומייצרת פליטה אדומה תחת מנעד רחב של אורכי גל מעוררים.[23]

פלואורסצנציה אביוטית

פלואורסצנציה של ארגוניט

גמולוגיה, מינרלוגיה וגאולוגיה

אבני חן, מינרלים, עשויים להיות בעלי פלואורסצנציה ייחודית או לזרוח באופן שונה תחת מקורות אור שונים כגו: אולטרה סגול קצר גל או ארוך גל, אור נראה או קרני רנטגן.

סוגים רבים של קלציט וענבר יזרחו תחת קרינת אולטרה סגול קצר גלי, אולטרה סגול ארוך גלי ואור נראה. אודם, אמרלד ויהלומים מראים פלואורסצנציה אדומה תחת אור UV ארוך-גלי, אור כחול ולעיתים אור ירוק. יהלומים גם פולטים אור תחת קרינת רנטגן.

הפלואורסצנציה במינרלים נגרמת על ידי מגוון רחב של אקטיבטורים תבנית:אנ. במקרים מסוימים, יש להגביל את ריכוז האקטיבטור מתחת לרמה מסוימת, כדי למנוע רוויה ודיכוי של פליטת הפלואורסצנציה. יתר על כן, המינרל צריך להיות נקי מזיהומים כמו ברזל או נחושת, כדי למנוע דיכוי פלואורסצנטי. מנגן דיולנטי, בריכוזים של עד אחוזים בודדים, אחראי לפלואורסצנציה האדומה או הכתומה של קלציט, לפלואורסצנציה הירוקה של וילמיט, לפלואורסצנציה הצהובה של האספריט ולפלואורסצנציה הכתומה של וולסטוניט וקלינוהדריט. אורניום הקסולנטי, זוהר בכל הריכוזים בצבע ירוק צהוב, והוא הגורם לפלואורסצנציהשל מינרלים כמו אוטוניט או אנדרסונייט. כרום טריולינטי בריכוז נמוך הוא המקור לפלואורסצנציה האדומה של אודם. אירופיום דיולנטי הוא המקור לפלואורסצנציה הכחולה, כאשר הוא נראה במינרל הפלואוריט. לנתנידים טריולינטיים כמו טרביום ודיספרוסריום הם הגורמים העיקריים לפלואורסצנציה הצהובה שמפגין המינרל פלואור, ותורמים לפלואורסצנציה הכתומה של זירקון. סידן מוליבדאט וסידן טונגסטייט זוהרים באופן מובהק בצהוב וכחול, בהתאמה. כאשר הם נמצאים יחד בתמיסה מוצקה, מועברת אנרגיה מהטונגסטן בעלת האנרגיה הגבוהה יותר למוליבדן באנרגיה נמוכה יותר, כך שרמות נמוכות למדי של מוליבדן מספקות כדי לגרום לפליטה צהובה עבור סידן טונגסטייט, במקום כחול. ספלריט (אבץ גופרתי), זוהר במגוון צבעים, המושפעים מנוכחות זיהומים שונים.

נפט גולמי זוהר במגוון צבעים, החל מחום עמום לשמנים כבדים ועד לצבעי צהבהב בהיר וכחלחל-לבן לשמנים קלים. תופעה זו משמשת בקידוחים וחיפושי נפט לזיהוי כמויות קטנות מאוד של שמן.

נוזלים אורגניים

תמיסות אורגניות כגון אנתרסן או סטילבן, מומסים בבנזן או טולואן, זוהרים עם הקרנת אולטרה סגול או קרני גמא. זמני ההתפרקות של פלואורסצנציה זו הם בסדר גודל של ננו-שניות, מכיוון שמשך ההארה תלוי בזמן החיים של המצבים המעוררים של החומר הפלואורסצנטי, במקרה זה אנתרסן או סטילבן.[24]

אטמוספירה

הקרינה נצפית באטמוספירה כאשר האוויר נמצא תחת הפצצת אלקטרונים אנרגטית: למשל בזוהר הקוטב, למולקולות וליונים שנוצרו יש תגובה פלואורסצנטית לאור.[25]

יישומים מבוססי פלואורסצנציה

תאורה

תבנית:ערך מורחב

ציור ופלסטיק מוארים על ידי צינורות UV.
פירוק של מקלות זוהרים תבנית:אנ

הנורה הפלואורסצנטית הנפוצה מבוססת על פלואורסצנציה. שפופרת או צינור הזכוכית מכיל ואקום חלקי וכמות קטנה של כספית. פריקה חשמלית בצינור גורמת לאטומי הכספית לפלוט בעיקר אור אולטרה סגול. הצינור מרופד בציפוי של חומר פלואורסצנטי, הנקרא זרחן, אשר סופג את האור האולטרה סגול ופולט מחדש אור בתחום הנראה.

התאורה הפלואורסצנטית יותר חסכונית באנרגיה בהשוואה לתאורה מבוססת אלמנטי להט. עם זאת, ספקטרום לא אחיד של תאורה פלואורסצנטית עלול לגרום לצבעים מסוימים להיראות שונה לעומת תאורת להט או תאורת יום באותו צבע. ספקטרום פליטת אדי הכספית מכיל קו אולטרה סגול קצר גל ב-254 ננומטר (המספק את רוב האנרגיה לזרחנות) וקווי אור נראה ב-436 ננומטר (כחול), 546 ננומטר (ירוק) ו-579 ננומטר (כתום-צהוב). ניתן לראות 3 קווים אלו על גבי הרצף הלבן באמצעות ספקטרוסקופ היד, עבור האור הנפלט על ידי צינורות ניאון לבן רגיל. אותם קווים נראים לעין, בתוספת פליטה של אירופיום וטרביום מהווים את ספקטרום הפליטה שעליו מבוסס עקרון הפעולה של נורה פלואורסצנטית קומפקטית.[26]

מנורות פלואורסצנטיות הוצגו לציבור לראשונה בתערוכה העולמית של ניו יורק 1939. השיפורים מאז היו בעיקר פוספורים טובים יותר, זמן חיים ארוך יותר פריקה פנימית עקבית יותר וצורות קלות יותר לשימוש (כמו מנורות פלואורסצנט קומפקטיות). כמה מנורות פריקה בעוצמה גבוהה (HID) מקשרות את יעילותן החשמלית הגדולה עוד יותר עם פוספורים טובים יותר לצורך ביצועי צבע טובים יותר.

דיודות פולטות אור מסוגים שונים

דיודות פולטות אור לבנות (LED) הפכו לזמינות באמצע שנות התשעים של המאה ה-20 כמנורות LED, בהן אור כחול נפלט מחיכוך בין מוליכים למחצה לבין זרחן הנמצא על גבי שבב זעיר. השילוב של האור הכחול שנמשך דרך הזרחן והפלואורסצנציה בין ירוק לאדום מהזרחן מייצרת פליטה של אור לבן.

מקלות זוהרים תבנית:אנ משתמשים לעיתים בחומרים פלורסצנטיים לספיגת אור מתגובה כימילומינסצנטית תבנית:אנ ופליטת אור בצבע אחר.[27]

כימיה אנליטית

מכשיר HPLC

תהליכים אנליטיים רבים כוללים שימוש בפלואורומטר, לרוב באורך גל מעורר יחיד ואורך גל לגילוי יחיד. בגלל הרגישות שהשיטה מעניקה, ניתן למדוד ריכוזי מולקולות פלואורסצנטיות בדיוק של עד אחד חלקי טריליון. [28]

מדידת פלואורסצנציה בכמה אורכי גל נעשית על ידי מערך גלאים, כדי לאתר תרכובות מזרימת HPLC. כמו כן, ניתן לבצע ויזואליזציה של פלטות TLC תבנית:אנ אם התרכובת או מגיב הצביעה הוא פלואורופור. הפלואורסצנציה אפקטיבית יותר כאשר יש יחס גדול יותר של אטומים ברמות אנרגיה נמוכות בהתפלגות בולצמן. אם כן, קיימת סבירות גבוהה יותר לעירור ושחרור פוטונים על ידי אטומים בעלי אנרגיה נמוכה יותר, מה שמייעל את התהליך.

ספקטרוסקופיה

תבנית:ערך מורחב

בדרך כלל ההתקן של תבחין תבנית:אנ ביולוגי פלואורסצנטי מכיל מקור אור שפולט אורכי גל שונים של אור. באופן כללי, נדרש רק אורך גל יחיד כדי לבצע אנליזה ראויה, ולכן כדי לסנן סלקטיבית את האור הוא עובר דרך מונוכרומטור עירור. בהמשך עובר אורך הגל המסוים דרך תא הדוגמה. אחרי בליעה ורה-פליטה, אורכי גל רבים מתמזגים עקב היסט סטוקס ומעברי אלקטרון. כדי להפריד ולנתח אותם, הקרינה הפלואורסצנטית מועברת דרך מונוכרומטור פליטה ונמדדת סלקטיבית בגלאי.

בתחום חקר המים, שימוש בספקטרוסקופיה פלואוסנטית משמש לזיהוי וניטור של מזהמים אורגניים במים.[29] בזכות פריצות דרך בתחום מדעי המחשב ולימוד מכונה, נמצא שניתן להשתמש בשיטה גם לזיהוי זיהום חיידקי של מי שתייה.[30]

ביוכימיה ורפואה

תמונת מיקרוסקופ של פלואורסצנציה עצמית של נייר כתוצאה מתאורה על סגולה.

פלואורסצנציה במדעי החיים משמשת ככלל כדרך לא מזיקה למעקב ולניתוח מולקולות ביולוגיות באמצעות פליטה פלואורסצנטית בתדירות ספציפית שבה אין קרינת רקע מהאור המעורר למעט רכיבים בעלי פלואורסצנציה חלשה (פלואורסצנציה עצמית). למעשה, ניתן "לתייג" חלבון או מרכיב אחר עם פלואורופור חיצוני, צבען פלואורסצנטי, שיכול להיות מולקולה קטנה, חלבון או נקודה קוונטית. לתיוג מסוג זה יש שימוש בהרבה יישומים ביולוגיים.[31]

הכימות של צבען נעשה באמצעות ספקטרופלואורמטר ומשמש ביישומים נוספים כגון:

מיקרוסקופיה

טכניקות אחרות

דיאגרמת פעולה של מכשיר ה-FACS (מיון תאים פלואורסצנטי) באמצעות ציטומטרית זרימה (flow cytometry).

שערים לוגיים ביולוגיים

יישום נוסף הוא שימוש במיקרוסקופית דימות זמן חיים פלואורסצנטי (FLIM) על מנת לייצר שערים לוגיים ביולוגיים. צימוד של ננו חלקיקי זהב למולקולות פלואורסצנטיות על ידי פפטיד טריפסין הניתן לניתוק, מוביל לשתי תוצאות אפשריות: סביבת PH גבוה ונוכחות אנזים. הדבר יוצר 4 מצבי יסוד: PH נמוך ללא אנזים (0,0), PH גבוה ללא אנזים (1,0), PH נמוך עם אנזים (0,1) ו-PH גבוה עם אנזים (1,1) הניתנים להפרדה ולהבחנה על ידי זמני חיים פלואורסצנטיים שונים. סופרפוזיציות שונות של מצבים אלה ניתנות לתרגום כשערי AND, OR, NAND, NOR, XOR ו-XNOR.[32]

זיהוי פלילי

ניתן לבצע ויזואלזיציה של טביעות אצבע בעזרת תרכובות פלואורסצנטיות כגון נינהדרין או DFO (דיאזפלואורן). דם וחומרים אחרים מתגלים לעיתים על ידי מגיבים פלואורסצנטיים כגון פלואורסצאין. סיבים וחומרים אחרים שנבדקים בתהליך הזיהוי הפלילי, הם לפעמים פלואורסצנטיים.

בדיקות אל הרס

בדיקות חודרניות פלואורסצנטיות משמשות לגילוי שברים ופגמים נוספים על גבי שטח איבר. עקיבת צבע, באמצעות צבענים פלואורסצנטיים, משמשת למציאת דליפות של נוזל או גז במערכות אינסטלציה.

שילוט

צבעים פלורסצנטיים משמשים לעיתים קרובות בשילוט, במיוחד שלטי דרכים. בדרך כלל ניתן לזהות צבעים פלורסצנטיים בטווחים ארוכים יותר מאשר הצבעים הלא פלואורסצנטיים, כאשר הכתום הפלואורסצנטי בולט במיוחד והוא נמצא בשימוש תכוף בשלטים ותוויות בטיחות.[33]

הבהרה אופטית

תרכובות פלואורסצנטיות משמשות לרוב כדי לשפר את מראה הבד והנייר, וגורמות לאפקט "הלבנה". משטח לבן המטופל במבהיר אופטי יכול לפלוט אור זוהר יותר מזה שמאיר עליו, ולגרום לו להיראות בהיר יותר. האור הכחול שנפלט על ידי המבהיר מפצה את הכחול שהולך ומצטמצם של החומר המטופל ומשנה את הגוון מצהוב או חום ללבן. מבהירים אופטיים מצויים בחומרי ניקוי, כביסה, נייר, קוסמטיקה, ביגוד ועוד.

חומר לניקוי כביסה זוהר בתאורה על סגולה.

ראו גם

קישורים חיצוניים

תבנית:מיזמים

הערות שוליים

תבנית:הערות שוליים תבנית:בקרת זהויות

  1. IUPAC. Kasha–Vavilov rule – Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") Archived 21 March 2012 at the Wayback Machine. Compiled by McNaught, A.D. and Wilkinson, A. Blackwell Scientific Publications, Oxford, 1997.
  2. תבנית:הארץ
  3. 3.0 3.1 Wucherer, M. F.; Michiels, N. K. (2012). "A Fluorescent Chromatophore Changes the Level of Fluorescence in a Reef Fish". PLoS ONE. 7 (6): e37913. Bibcode:2012PLoSO...737913W. doi:10.1371/journal.pone.0037913. PMC 3368913. תבנית:PMID.
  4. Fujii, R (2000). "The regulation of motile activity in fish chromatophores". Pigment Cell Research. 13 (5): 300–19. doi:10.1034/j.1600-0749.2000.130502.x. תבנית:PMID.
  5. 5.0 5.1 Sparks, J. S.; Schelly, R. C.; Smith, W. L.; Davis, M. P.; Tchernov, D.; Pieribone, V. A.; Gruber, D. F. (2014). Fontaneto, Diego (ed.). "The Covert World of Fish Biofluorescence: A Phylogenetically Widespread and Phenotypically Variable Phenomenon". PLoS ONE. 9 (1): e83259. Bibcode:2014PLoSO...983259S. doi:10.1371/journal.pone.0083259. PMC 3885428. תבנית:PMID.
  6. Mazel, Charles (2017). "Method for Determining the Contribution of Fluorescence to an Optical Signature, with Implications for Postulating a Visual Function". Frontiers in Marine Science. 4. doi:10.3389/fmars.2017.00266. ISSN 2296-7745.
  7. Matz, M. "Fluorescence: The Secret Color of the Deep". Office of Ocean Exploration and Research, U.S. National Oceanic and Atmospheric Administration. Archived from the original on 31 October 2014.
  8. Heinermann, P (10 March 2014). "Yellow intraocular filters in fishes". Experimental Biology. 43 (2): 127–147. תבנית:PMID.
  9. תבנית:צ-מאמר
  10. Bou-Abdallah, F.; Chasteen, N. D.; Lesser, M. P. (2006). "Quenching of superoxide radicals by green fluorescent protein". Biochimica et Biophysica Acta (BBA) - General Subjects. 1760 (11): 1690–1695. doi:10.1016/j.bbagen.2006.08.014. PMC 1764454. תבנית:PMID
  11. Field, S. F.; Bulina, M. Y.; Kelmanson, I. V.; Bielawski, J. P.; Matz, M. V. (2006). "Adaptive Evolution of Multicolored Fluorescent Proteins in Reef-Building Corals". Journal of Molecular Evolution. 62 (3): 332–339. Bibcode:2006JMolE..62..332F. doi:10.1007/s00239-005-0129-9. תבנית:PMID
  12. תבנית:צ-מאמר
  13. תבנית:צ-מאמר
  14. תבנית:צ-מאמר
  15. תבנית:צ-מאמר
  16. תבנית:קישור כללי
  17. תבנית:קישור כללי
  18. תבנית:צ-מאמר
  19. תבנית:צ-מאמר
  20. Andrews, K; Reed, S. M.; Masta, S. E. (2007). "Spiders fluoresce variably across many taxa". Biology Letters. 3 (3): 265–7. doi:10.1098/rsbl.2007.0016. PMC 2104643. תבנית:PMID.
  21. Stachel, S. J.; Stockwell, S. A.; Van Vranken, D. L. (1999). "The fluorescence of scorpions and cataractogenesis". Chemistry & Biology. 6 (8): 531–539. doi:10.1016/S1074-5521(99)80085-4. תבנית:PMID.
  22. Iriel, A. A.; Lagorio, M. A. G. (2010). "Is the flower fluorescence relevant in biocommunication?". Naturwissenschaften. 97 (10): 915–924. Bibcode:2010NW.....97..915I. doi:10.1007/s00114-010-0709-4. תבנית:PMID
  23. McDonald, Maurice S. (2 June 2003). Photobiology of Higher Plants. John Wiley & Sons. ISBN 9780470855232.
  24. תבנית:צ-מאמר
  25. תבנית:צ-מאמר
  26. תבנית:קישור כללי
  27. Harris, Tom (7 December 2001). "How Fluorescent Lamps Work". HowStuffWorks. Discovery Communications. Archived from the original on 6 July 2010. Retrieved 27 June 2010.
  28. Rye, H. S.; Dabora, J. M.; Quesada, M. A.; Mathies, R. A.; Glazer, A. N. (1993). "Fluorometric Assay Using Dimeric Dyes for Double- and Single-Stranded DNA and RNA with Picogram Sensitivity". Analytical Biochemistry. 208 (1): 144–150. doi:10.1006/abio.1993.1020. תבנית:PMID.
  29. תבנית:צ-מאמר
  30. תבנית:צ-מאמר
  31. תבנית:צ-ספר
  32. תבנית:צ-מאמר
  33. Hawkins, H. Gene; Carlson, Paul John and Elmquist, Michael (2000) "Evaluation of fluorescent orange signs" Archived 4 March 2016 at the Wayback Machine, Texas Transportation Institute Report 2962-S.