מעוין

מתוך testwiki
קפיצה לניווט קפיצה לחיפוש
מעוינים ואלכסוניהם
מעוינים ואלכסוניהם

מעוין הוא מרובע שווה-צלעות. מעוין הוא מקרה פרטי של דלתון (דלתון קמור שווה-שוקיים) ושל מקבילית (מקבילית שוות שוקיים). ריבוע הוא מקרה פרטי של מעוין שבו הזוויות שוות.

בגאומטריה אנליטית ניתן להגדיר מעוין, שאלכסוניו p ו-q מונחים על הצירים, כמקום הגאומטרי של הנקודות (x, y) שמקיימות:

|xp|+|yq|=1.

פאון שכל פאותיו הן מעוינים נקרא "מעוינון".

אטימולוגיה

המילה "מעוין" שאולה מהמילה הערבית "معين" (תרגומו המילולי הוא גם "מוגדר"). המינוח נקבע לייצג את הצורה הגאומטרית של מרובע שווה-צלעות בעברית על ידי המתרגם רבי אברהם בר חייא, נעשה בו גם שימוש בספרות ימי הביניים היהודית[1].

כמו כן נמצא גם שימוש במושג "מעוין" בעברית הירושלמית כמילה המגדירה את המושג שקול, דוגמה לכך אפשר למצוא במדרש על משה שאמר לאלוהים תבנית:ציטוטון[2]. כמו כן נעשה גם שימוש דומה במילה על ידי ספרות ההלכה של ימי הביניים[3].

תכונות המעוין

מעוין

האלכסונים

את אורך האלכסונים p = AC ו-q = BD ניתן להציג לפי אורך הצלע ואחת הזוויות באמצעות הנוסחאות הבאות, שנובעות ממשפט הקוסינוסים:

p=a2+2cosα
q=a22cosα

שטח המעוין

קיימות דרכים אחדות לחישוב שטח המעוין:

  • מחצית מכפלת האלכסונים זה בזה. נובע מכך שהאלכסונים מחלקים את המעוין לארבעה משולשים ישרי זווית.
  • אורך צלע כפול הגובה (בציור: K=ah). בהתאם לנוסחה לחישוב שטח מקבילית.
  • אורך צלע בריבוע כפול סינוס של אחת הזוויות. בציור: K=a2sinα=a2sinβ
  • הגובה בריבוע חלקי סינוס של אחת הזוויות. בציור: K=h2sinα,
  • חצי ההיקף של המעוין כפול רדיוס המעגל החסום. בציור: K=2ar

משפטים הפוכים

  • מקבילית שאלכסוניה מאונכים זה לזה היא מעוין.
  • מקבילית שבה אלכסון חוצה את הזווית היא מעוין.
  • מקבילית עם זוג צלעות סמוכות שוות היא מעוין.
  • מרובע שכל צלעותיו שוות הוא מעוין.

ריצוף המישור

באמצעות מעוינים זהים ניתן ליצור ריצוף של המישור בשלוש דרכים:

ריצוף ששקול טופולוגית לריצוף ריבועי ריצוף במעוינים שזוויותיהםתבנית:ש60 ו-120 מעלות

תכונות דואליות

המצולע הדואלי של המעוין הוא המלבן:

  • במעוין כל הצלעות שוות ובמלבן כל הזוויות שוות.
  • במעוין זוויות נגדיות שוות ובמלבן צלעות נגדיות שוות.
  • למעוין יש מעגל חסום ולמלבן יש מעגל חוסם.
  • למעוין יש ציר סימטריה דרך כל זוג זוויות נגדיות, ולמלבן יש ציר סימטריה דרך כל זוג צלעות נגדיות.
  • האלכסונים של מעוין נפגשים בזוויות שוות, ואלכסונים של מלבן נחתכים באורכים שווים.
  • חיבור אמצעי הצלעות של מעוין יוצר מלבן, וחיבור אמצעי הצלעות של מלבן יוצר מעוין.

ראו גם

קישורים חיצוניים

תבנית:מיזמים

הערות שוליים

תבנית:הערות שוליים

תבנית:מצולעים ופאונים תבנית:בקרת זהויות