על פתית השלג המשושה
תבנית:ספר על פתית השלג המשושה (ליתר דיוק שי לראש השנה או על פתית השלג המשושה; בלטינית: Strena Seu De Nive Sexangula) הוא מאמר של יוהאנס קפלר שניתן כשי ראש השנה ב-1611 לידידו ופטרונו תבנית:קישור שפה. במאמר, חקר קפלר את הסיבה לצורתו המשושה של פתית השלג. בדרך הוא העלה רעיונות רבים והסברים אפשריים, שאת כולם דחה בעצמו, כך שהמאמר נותר ללא תשובה. בכל זאת, המאמר נחשב כמבשר בגישתו המדעית את מדע הקריסטלוגרפיה, והוא מפורסם גם בכך שבו נתן קפלר את ההשערה הקרויה על שמו (השערת קפלר, תבנית:קישור שפה) לגבי תבנית:קישור שפה (השערה שהוכחה על ידי מחשב רק בשנת 1998).
פתיחה והצגת השאלה

קפלר ידע עד כמה חובב ידידו את ה"אין" (כלומר את ה-"לא כלום") ובכל מקרה שכרו של קפלר (שעבד כמתמטיקאי חצר של הקיסר רודולף השני) לא איפשר לו להעניק מתנה גדולה יותר, ולכן חיפש שי הקרוב ביותר ל"אין"תבנית:הערה. הוא בדק את ארבעת היסודות (אבק, אש, אוויר, ומים) אך חשב שבכולם יש "משהו". לבסוף, בעודו חוצה את גשר קארל בפראג, נפל על מעילו פתית שלג, והוא נראה לו נושא מתאים לשי לתבנית:קישור שפה, היות שירד מהשמיים בצורת כוכב. יש כאן גם משחק מילים, מכיוון שהמילה Nix משמעה שלג בלטינית (שפת המאמר) ומשמעה גם "לא כלום" בגרמנית עממית של אז. קפלר הציע לברר "למה פתיתי השלג בראשית נפילתם, ולפני שהם מסתבכים זה בזה לגושים, הם תמיד בעלי שישה קודקודים עם שישה מקלות דמויי נוצה".
סקירת רעיונות הקשורים לשאלה



בהמשך המאמר, סקר קפלר הסברים אפשריים לצורת פתית השלג (שאת כולם הוא לבסוף דחה בעצמו):
הסבר אפשרי אחד הוא שניתן לרצף את המישור על ידי משושים. אלא שבעצם אפשר גם עם ריבועים ומשולשים.
כדי להכיר טוב יותר את הבעיה, חקר קפלר כמה מקרים של דברים משושים בטבע, וניסה להגיע לסיבת צורתם: הוא בחן את תאי הדונג בחלת הדבש של הדבורים. הוא שם לב שבעוד שלפתח התא יש צורת משושה הרי שחלקו האחורי נסגר על ידי שלושה מעוינים (כל מעוין נשען על שתים מצלעות המשושה וכולם נפגשים בקודקוד אחד - ראו איור)תבנית:הערה. קפלר תהה אם קיים פֵּאוֹן דומה לפאון הארכימדי או לאפלטוני המורכב רק ממעוינים. הוא הצהיר שמצא שניים כאלה, כשאחד מהם, הדודקהדרון-המעוין המוקף ב-12 מעוינים, יכול לרצף את המרחב התלת-ממדי ללא רווחים, כמו שהמשושה יכול לרצף את המרחב הדו-ממדי. הוא העלה כמה סיבות אפשריות לצורת המשושה של תאי הכוורת: המשושה הוא המרווח ביותר בין הפאונים המרצפים את המישור, הוא המותאם ביותר למבנה גופם הרך של הדבורים, וניתן לחסוך בעבודה כשכל קיר משרת שני תאים, במקום למשל תאים עגולים שהיו מותירים רווחים מבוזבזים.
מכאן קפלר עבר לתהות לגבי הסיבה לצורת גרעיני הרימון דמויי הדודקהדרון-המעוין הממלאים את חלל הפרי. הגרעינים קטנים בתחילה ועגולים כל עוד יש להם מקום. אבל כשקרום הרימון מתקשה והגרעינים מתמלאים בעסיס הם מסתדרים ומתכווצים זה לצד זה כך שכל גרעין מתיישב בין שלושה גרעינים של השכבה הבאה. קפלר טען שאם יושמו כדורים רכים באופן חופשי בתוך כלי שאחר כך יכווץ מכל עבריו אזי הכדורים יקבלו את צורת הדודקהדרון-המעוין. אם לעומת זאת הם יסודרו בזוויות ישרות וזה מעל זה אזי הלחץ יגרום להם לקבל צורת קוביות.
השערת קפלר

אם מפזרים כדורים במישור ולוחצים עליהם כדי לקרבם זה לזה הם יסתדרו באחת משתי צורות - ראו סידורים A ו-B בדיאגרמה שבמסגרת בראש ערך זה. בסידור A לכל כדור ארבעה שכנים ובסידור B לכל כדור שישה שכנים. אם נשים שכבה מסוג A ישירות על שכבה מסוג A (או B מעל B) ונלחץ – יתקבלו קוביות. אם לעומת זאת נמקם כל כדור בשכבה B העליונה בין שלושה כדורים בשכבה B התחתונה יתקבל סידור בעל צפיפות גבוהה יותר (כלומר יותר כדורים לנפח כולל נתון). בסידור זה לכל כדור שישה שכנים בשכבה שלו ועוד שלושה מלמעלה ושלושה מלמטה. במקרה זה לחץ על הכדורים יוביל לדודקהדרונים-המעוינים. קפלר טוען שאין סידור אחר של כדורים (לא לחוצים) שיתן צפיפות גבוהה יותר. קפלר לא הוכיח את הטענה הנקראת "השערת קפלר". ניתן להראות שלמעשה ישנם סידורים רבים המביאים לאותה צפיפות מקסימלית. מעל שתי שכבות B שתוארו ניתן להוסיף שכבה B שלישית בדיוק מעל השכבה B התחתונה, או בהזזה כך שכל כדור נמצא מעל מרווח בשכבה התחתונה. ראו איור. כיוון שבכל שכבה הנוספת מלמעלה יש שתי אפשרויות כאלה יוצא שיש אינסוף סידורים צפופים אפשריים של המרחב. בכל מקרה הצפיפות המתקבלת היא של
בהשוואה לצפיפות של כ-0.65תבנית:מקור המתקבלת כשמכניסים כדורים באופן אקראי לתחום מוגבל.
הרקע להשערה והוכחתה
את בעיית דחיסת הכדורים קיבל קפלר במהלך התכתבות שערך ב-1606 עם המתמטיקאי האנגלי תבנית:קישור שפהתבנית:הערה, שבתורו עסק בשאלה שהציג לו וולטר ראלי בהקשר של מציאת הדרך היעילה ביותר לסדר כדורי תותח על סיפון הספינה. אחרי פרסום ההשערה על ידי קפלר ניסו רבים להוכיחה. בשנת 1831 הוכיח קרל פרידריך גאוסתבנית:הערה את ההשערה למקרים בהם הכדורים מסודרים בסריג סדור. אחרי גאוס לא הייתה עוד התקדמות במאה ה-19, וב-1900 דויד הילברט כלל את ההשערה כאחת מ-23 הבעיות הפתוחות במתמטיקה. בשנת 1953, הראה המתמטיקאי ההונגרי תבנית:קישור שפה שניתן להכריע את השאלה בעזרת מספר גדול אך סופי של חישובים. בשנת 1992 פתח תבנית:קישור שפה (מאוניברסיטת מישיגן באותם ימים) בתוכנית מחקר שבה הראה בעזרת מחשב שכ-5000 סידורים מייצגים הם בעלי צפיפות שאינה גבוהה מהגבול של קפלר. ב-1998 הסתיימו החישובים, וההוכחה הארוכה התקבלה על ידי ועדת מומחים ב"99%" ודאות. בשנת 2015 שיפר היילס את הפתרון כשפרסם הוכחה פורמלית שיכלה הפעם בעצמה לעבור בדיקת נכונות על ידי מחשב ובכך להסיר כל ספק בנכונותהתבנית:הערה.
סיום המאמר
קפלר ממשיך לסקור צורות נוספות בטבע, כמו החלוקה המחומשת של הפרחים, הפירות, וגם תאי הזרעים בכמה צמחים. כאן הוא חושב שה"מניע נותן הצורה" (facultas formatrix) קשור איכשהו באסתטיקה. המחומש עצמו ניתן לבנייה בעזרת יחס הזהב הקשור גם הוא באסתטיקה ובצמחים. אך מה המניע לגבי פתית השלג המשושה? השלג נוצר מאדים המתקררים לפתיתים (בניגוד לקרח הנוצר ממים שקפאו). מדוע, אבל, פתיתי השלג הם שטוחים ולא בעלי נפח ככדורים? אולי כיוון שהמשושה הוא מישורי במהותו כיוון שהוא המצולע המשוכלל הראשון שאינו מרכיב לבדו פאונים תלת־ממדיים? או מפני שהמאבק בין קור לחום מתרחש קודם כל במשטחים? בכל אופן, כדי לכסות את המישור במשושים יש צורך שיהיו באותו גודל, והרי פתיתי השלג הם בגדלים שונים. מכאן שהם נוצרים לא בבת אחת אלא כהרכבה והרחבה של יחידות קטנות יותר. לסיום, לגבישים במכרות יש צורות שונות ולא רק משושות, מכאן שהמשושה לא הכרחי, אלא מאפיין את החומר. אולי יש במים מעין מלח המתגבש במשושים? בנקודה זאת קפלר סוגר את הדיון ומעביר את השאלה אל הכימאים, ואל ידידו ווקאר.
ההסבר המודרני לצורה המשושה של פתיתי השלג

קפלר, כאמור, לא הגיע לפתרון מספק לשאלה שהגדיר. אף על פי שהבין שצורת הגביש נובעת מהרכבה והרחבה של צורות בסיסיות דומות, הוא לא תמך בתורה האטומית של החומר, ולמשל בפתיחת המאמר כשחיפש נושא "קרוב לאין" הוא פסל את האטום, כיוון שהוא שווה ממש לאין ולא סתם קרוב אליו. בכל זאת, ההסבר המקובל כיום לצורת הגבישים, ופתיתי השלג ביניהם, הוא במבנה האטומי של המולקולות המרכיבות את הגביש. בקריסטלוגרפיה, המערכת הגבישית ההקסגונלית (מיוונית הקסגון = משושה; נקראת גם המערכת הגבישית המשושה) היא אחת משבע המערכות הגבישיות. במקרה של מים, , שני אטומי המימן יוצרים זווית של כ-104.45° סביב אטום החמצן. מולקולת מים היא קוטבית עם קטבים חיוביים באטומי המימן ושליליים בחמצן, כך שמימן של מולקולת מים אחת נמשך לחמצן של מולקולה שכנה (קשר מימן). סידור יציב מתקבל כאשר שש מולקולות מים נקשרות בקשרי מימן זו לזו ב"מעגל" (כלומר במשושה) כמו גם למולקולות מים שכנותתבנית:הערה. פתית השלג נוצר מהצטברות של עוד ועוד מולקולות מים סביב הגרעין המשושה המקורי. ההסתברות של מולקולות להצטבר בפינות גדולה מאשר בשאר האזוריםתבנית:הערה. הצורה שבה המולקולות הנוספות מצטברות תלויה בתנאי מזג אוויר מקומיים. למשל, תבנית:קישור שפהתבנית:הערה מראה אילו סוגי משושים מתקבלים בכל תחום טמפרטורות. תנאי מזג האוויר זהים בכל פינות הגביש ולכן צורתן זהה. הפתיתים אבל שונים זה מזה, ועדיין אין הסבר מלא לצורתם.